CHATHAM COUNTY PURCHASING & CONTRACTING DEPARTMENT

ADDENDUM NO. <u>1</u> TO <u>18-0027-4</u>

FOR: TRUMAN LINEAR PARK TRAIL - PHASE 2A

PLEASE SEE THE FOLLOWING FOR ADDITIONS, CLARIFICATIONS AND/OR CHANGES:

1. SEE ATTACHED: RESPONSES TO QUESTIONS (5 pages)

2. SEE ATTACHED: REVISED BID SHEETS (6 pages)

3. SEE ATTACHED: Bridge Foundation Investigation Report (BFI #1) (37 pages)

4. SEE ATTACHED: Bridge Foundation Investigation Report (BFI #2) (37 pages)

NOTE: There will be an ADDENDUM 2 issued no later than <u>Tuesday</u>, <u>June 26, 2018</u>. The cut off time to submit questions REMAINS 3PM, Thursday, June 21, 2018.

NOTE: BID OPENING <u>HAS BEEN EXTENDED</u> TO: 2PM, TUESDAY, JULY 3, 2018

THE PROPOSER IS RESPONSIBLE FOR MAKING THE NECESSARY CHANGES AND MUST ACKNOWLEDGE RECEIPT OF ADDENDUM.

RÖBERT E. MARSHALL SENIOR PROCUREMENT SPECIALIST CHATHAM COUNTY

<u>6/20/18</u> DATE

Responses to Questions

1) Verify the location of the sawcut joints shown on the typicals. Typicals say every 12', but note 2 says control point shall be the width of the trail, which is 10'. Where should the sawcut be located?

Sawcut joints shall be provided every 10' along the length of the 10' wide trails. Amended plan sheets will be provided with Addendum No. 2.

2) What type of concrete is to be used for the wooden safety rail? Are all costs associated with construction of the rail (gravel, concrete, etc.) included in the overall cost?

The price bid for 502-9000 - TIMBER RAILING shall include all costs associated with the construction of the rail per the detail, including, but not limited to: Class B concrete footing, gravel, posts, rails and fasteners.

3) I don't see where the typicals or mainline plans call for 8-inch concrete, but the pay item is set-up. Verify this is needed.

Note 9 on Sheet 04-0001 shall be revised as follows:

ALL ADA RAMPS AND SIDEWALK WITHIN THE INTERSECTION RADII ARE TO BE 8 INCH CONCRETE AND PAID FOR UNDER BID ITEM 441-0108 - CONC SIDEWALK, 8 IN. THE COST FOR CONSTRUCTING THE ADA RAMPS SHALL BE INCLUDED IN THE PRICE BID FOR CONCRETE SIDEWALK. Amended plan sheets will be provided with Addendum No. 2.

4) Please reference drawings 37-0003 and 37-0005. On drawing 37-0003, the handrail posts appear to have blocking between the post and the outside stringer but on the typical section shown on 37-0005, no blocking is called out. Should there be blocking between the handrail posts and the outside stringer and if so, what size?

Wood Blocking should be placed between the Timber post and exterior stringers. They should be 8" x 6" x 12" S4S Blocking.

Amended plan sheets will be provided with Addendum No. 2.

5) There does not appear to be a bid item for the wood pile. Will the wood pile be paid for under Bid Item 502-1200 "Bridge Timber, Treated or will a new bid item be created?

A bid item for timber piling has been added in the attached revised bid tab sheet to reflect the following:

520-2500 PILING, TIMBER - TREATED 5,800 LF Amended plan sheets will be provided with Addendum No. 2.

6) Please reference drawing 37-0005. How many $3/8'' \ge 6''$ HDG lags shall be used to fasten the $3'' \ge 8'''$ timbers to each post? The text call out states (2) but detail A-A shows (4).

The intent is to have two 3/8" x 6" HDG lags per row - 4 total per location. Amended plan sheets will be provided with Addendum No. 2.

7) The area shown for riprap cover at the bridges (Sheets13-0001 & 13-0009) is approximately 200 sq yd, however the notes say 300 sq yd on each side of the bridges and the bid quantity is 1,200 sq yd. Would it be possible to adjust the bid quantity to reflect the job quantity of 200 sq. yds total? The same needs to be adjusted for filter fabric.

For Structures, the following quantities have been modified in the attached revised bid tab sheet to
reflect the following:603-2024STN DUMPED RIP RAP, TP 1, 24 IN200 SY603-7000PLASTIC FILTER FABRIC200 SYAmended plan sheets will be provided with Addendum No. 2.

8) Please confirm we are to drive 2 indicator piles 50 ft. long at each bridge?

Yes. Test Piles are required at Bridge sites. One of the uses will be to determine pile order lengths.

9) On the bid schedule the pile length item is 340 LF. Does this quantity exclude the test piles?

Yes. The 340 LF pile lengths excludes the lengths for the Test Piles.

10) The bid schedule has no item for the timber piles

A bid item for timber piling has been added in the attached revised bid tab sheet to reflect the following: 520-2500 PILING, TIMBER - TREATED 5,800 LF Amended plan sheets will be provided with Addendum No. 2.

11) The bid schedule has no item for the timber piles and the bid schedule item 502-1200 has 293 MBM for bridge timber treated. A first estimate results in less than half that amount for the 971 ft. of boardwalks. Could bid for boardwalk be per linear feet and include piles in this item?

No, the boardwalk will not be bid per linear foot. The bridge timber quantity has been modified and a bid item for timber piling has been added in the attached revised bid tab sheet to reflect the following: 502-1200 BRIDGE TIMBER, TREATED 120 MBM 520-2500 PILING, TIMBER - TREATED 5,800 LF Amended plan sheets will be provided with Addendum No. 2.

12) Please clarify where stringer blocking goes. The details for the boardwalk do not show any stringer blocking at the rail post locations. Usually, we see blocking at mid-span and at the outer stringers at rail posts locations. Do you want to add blocking at these locations?

Wood Blocking should be placed between the Timber post and exterior stringers. They should be 8" x 6" x 12" S4S Blocking. Drawing No. 37-0004, Note 1 provides description of where blocking is required. For Spans less than 20' bracing shall be installed at Stringer Ends. 20' span requires bracing at the ends and mid-span.

13) The boardwalk section at station 426+94 crosses a ditch. Is the intent to make this a one span boardwalk or can an intermediate bent be placed on the middle of the ditch?

The Contractor shall avoid placement of boardwalk bents within a drainage channel unless permitted by the Engineer. The 21 linear foot boardwalk beginning at Station 426+94 is expected to be constructed as a single span, with a span length of 20-feet. Amended plan sheets will be provided with Addendum No. 2.

14) Pile driving formulas contain safety factors when calculating capacities. GDOT piling formulas use more stringent coefficients making actual capacities 3 to 4 times design load. GDOT projects seldom use pile load tests because of their formulas. Can the bid item for load tests be deleted?

No. Load test are required at bridge sites.

15) Note 8 on Sheet 37-0003 calls for 3x8 decking attached with 80d HDG nails. Are these plain shank, ring shank or spiral shank nails?

Ring Shank Nails shall be used. Amended plan sheets will be provided with Addendum No. 2.

16) Sheet 24-0009 shows a gas main and an overhead power line. The drawings do not say if these are relocated. Are these lines being relocated if they interfere with the bridge abutment? Will these lines be off while pile driving occurs? Is there a bid item for the gas main piping and tie-ins?

The Contractor shall adhere to the "Call Before You Dig Law" by calling the Underground Protection Center before beginning construction. The Contractor shall be responsible for all utilities and shall coordinate work with utility companies. Existing utilities shown on the plans are approximate, based on the best available information and may not reflect all facilities. It shall be the Contractor's responsibility to field verify existing utility locations prior to construction. Should the Contractor

identify a conflict with a utility, the Engineer shall be notified prior to continuing with work around conflict. The Engineer will determine if a utility conflicts with the work and will initiate coordination with the utility company should relocation of their facilities be required. The Contractor will not be responsible for relocation of utilities that conflict with the work. The Contractor will not be compensated for any delay or damage caused by utility facilities, obstruction, or any other item not being removed or relocated in advance of their work.

Amended plan sheets will be provided with Addendum No. 2 to include the note above.

Chatham County will facilitate the relocation of the water gauge and associated overhead power and communication lines on the west side of the bridge at Station 218+50 prior to bridge construction.

17) Is a Geotech report on the boardwalk areas available? If so please provide.

A Geotech report is not available for the boardwalk areas.

18) Pile embedment per note 11 on sheet 37-003 is 25' below grade. Please confirm this depth is correct. Must these be driven the entire depth or will contractor be able to pre auger?

The intention is to have 25' of pile embedment. Pre auger may be used but should be stopped approximately 3' above final tip elevation. Amended plan sheets will be provided with Addendum No. 2.

19) Full depth Blocking – Sheet 37-0006, Details show blocking for the boardwalks. Will full depth blocking be allowed as an equal to shorter blocking with angle underneath? If not please identify what hardware is being used to hold the shorter blocking up.

3/4 depth blocking should be used to provide visual inspection of backwall blocking planks at the abutments. Full depth blocking may be used at Intermediate Bents. Regardless of blocking depth used, wood blocking should be bolted to stringers with steel angles or suspended in steel hangers that are nailed to blocks and stringer sides.

Square Bar - Sheet – 37-0006, Will a 1" diameter hex bolt and 5/8" diameter hex bolt be accepted as an equal to the square bar showed in the detail?

Yes, 1" square bar & 5/8 square bar may be substituted with similar size bolts or bars (#8 rebar & #5 rebars respectively).

Amended plan sheets will be provided with Addendum No. 2.

20) Lumber Grades – 37-0003 Note Number 5, Is the 90 PSF/H5 design load based on #2 grades lumber or the lumber specified in the GDOT standard specifications, section 860, table 1?

The 90 PSF / H5 Design Load is based on AASHTO Pedestrian Bridge Design Requirements for Clear Deck Width 10' or less. Stringers were evaluated to assure they met the requirements of GDOT Standard Specification, Section 860.

21) Will the contractor be able to submit for approval, GA professional Engineer signed and sealed shop drawings and calculations meeting the 90 PSF/H5 design load?

Per General Note 3 (Sheet 37-0003) the Contractor shall submit calculations and plans sealed by a GA Professional Engineer prior to beginning work.

Truman Linear Park Ph 2-A 0007631 Revised 6/20/2018, changes shown in BOLD

ITEM	DESCRIPTION	UNITS	QUANTITY	UNIT PRICE	AMOUNT
	ROADWAY				
150-1000	TRAFFIC CONTROL - 0007631	LS	1		
207-0203	FOUND BKFILL MATL, TP II	CY	157		
210-0100	GRADING COMPLETE - 0007631	LS	1		
310-1101	GR AGGR BASE CRS, INCL MATL	TN	554		
318-3000	AGGR SURF CRS	TN	30		
402-3121	RECYCLED ASPH CONC 25 MM SUPERPAVE, GP 1 OR 2, INCL BITUM MATL & H LIM	TN	23		
402-3130	RECYCLED ASPH CONC 12.5 MM SUPERPAVE, GP 2 ONLY, INCL BITUM MATL & H L	ΤN	56		
402-3190	RECYCLED ASPH CONC 19 MM SUPERPAVE, GP 1 OR 2, INCL BITUM MATL & H LIME	ΤN	72		
413-0750	TACK COAT	GL	41		
439-0300	PERVIOUS CONCRETE PAVEMENT, 6 IN THK	SY	378		
441-0104	CONC SIDEWALK, 4 IN	SY	195		
441-0105	CONC SIDEWALK, 5 IN	SY	16920		
441-0106	CONC SIDEWALK, 6 IN - CLASS AA CONC	SY	639	hi i	
441-0108	CONC SIDEWALK, 8 IN	SY	272		
441-0300	CONC SPILLWAY, SPCL DES	EA	8		
441-0748	CONCRETE MEDIAN, 6 IN	SY	134		
441-4030	CONC VALLEY GUTTER, 8 IN	SY	25		
441-5002	CONCRETE HEADER CURB, 6 IN, TP 2	LF	543		
441-6222	CONC CURB & GUTTER, 8 IN X 30 IN, TP 2	LF	675		
500-3201	CLASS B CONCRETE, RETAINING WALL	CY	39		
500-3800	CLASS A CONCRETE, INCL REINF STEEL	CY	10		
500-3900	CLASS B CONCRETE, INCL REINF STEEL	CY	7		
500-9999	CLASS B CONC, BASE OR PVMT WIDENING	CY	2		
502-9000	TIMBER RAILING	LF	1841		
515-2020	GALV STEEL PIPE HANDRAIL, 2 IN, ROUND	LF	192		
550-1180	STORM DRAIN PIPE, 18 IN, H 1-10	LF	319		
550-1240	STORM DRAIN PIPE, 24 IN, H 1-10	LF	127		
550-1300	STORM DRAIN PIPE, 30 IN, H 1-10	LF	107		

Truman Linear Park Ph 2-A 0007631 Revised 6/20/2018, changes shown in BOLD

ITEM	DESCRIPTION	UNITS	QUANTITY	UNIT PRICE	AMOUNT
550-1360	STORM DRAIN PIPE, 36 IN, H 1-10	LF	62		
550-1480	STORM DRAIN PIPE, 48 IN, H 1-10	LF	24		
550-4218	FLARED END SECTION 18 IN, STORM DRAIN	ÉA	19		
550-4224	FLARED END SECTION 24 IN, STORM DRAIN	EA	5		
550-4230	FLARED END SECTION 30 IN, STORM DRAIN	EA	4		
550-4236	FLARED END SECTION 36 IN, STORM DRAIN	EA	2		
611-3010	RECONSTR DROP INLET, GROUP 1	EA	8		
611-8000	ADJUST CATCH BASIN TO GRADE	EA	3		
611-8050	ADJUST MANHOLE TO GRADE	EA	2		
617-1060	PERM ANCH SLOPE STAB SYS	LS	1		
634-1200	RIGHT OF WAY MARKERS	EA	6		
643-0050	TEMPORARY FIELD FENCE	LF	125		
643-1152	CH LK FENCE, ZC COAT, 6 FT, 9 GA	LF	4286		
643-8010	GATE, CHAIN LINK ZC COAT -	EA	8		
643-8200	BARRIER FENCE (ORANGE), 4 FT	LF	6713		
668-2100	DROP INLET, GP 1	EA	2		
668-4300	STORM SEWER MANHOLE, TP 1	EA	7		
668-4311	STORM SEWER MANHOLE, TP 1, ADDL DEPTH, CL 1	LF	11		

A REPORT OF A DESCRIPTION A DESCRIPTION OF A DESCRIPTION

TEMPORARY EROSION CONTROL 20 163-0232 AC TEMPORARY GRASSING 229 ΤN 163-0240 MULCH EA 5 163-0300 CONSTRUCTION EXIT 6 ΕA CONSTRUCT AND REMOVE SILT CONTROL GATE, TP 2 163-0502 13 CONSTRUCT AND REMOVE SILT CONTROL GATE, TP 3 ΕA 163-0503 CONSTRUCT AND REMOVE FABRIC CHECK DAM - TYPE C SILT FENCE LF 432 163-0528 21 CONSTRUCT AND REMOVE INLET SEDIMENT TRAP ΕA 163-0550 MAINTENANCE OF TEMPORARY SILT FENCE, TP C LF 13659 165-0030 LF 216 MAINTENANCE OF CHECK DAMS - ALL TYPES 165-0041

Truman Linear Park Ph 2-A 0007631 Revised 6/20/2018, changes shown in BOLD

ITEM	DESCRIPTION	UNITS	QUANTITY	UNIT PRICE	AMOUNT
165-0086	MAINTENANCE OF SILT CONTROL GATE, TP 2	EA	6		
165-0087	MAINTENANCE OF SILT CONTROL GATE, TP 3	EA	13		
165-0101	MAINTENANCE OF CONSTRUCTION EXIT	EA	10		
165-0105	MAINTENANCE OF INLET SEDIMENT TRAP	EA	21		
167-1000	WATER QUALITY MONITORING AND SAMPLING	EA	3		
167-1500	WATER QUALITY INSPECTIONS	MO	16		
171-0030	TEMPORARY SILT FENCE, TYPE C	LF	27318		

PERMANENT EROSION CONTROL

603-2024	STN DUMPED RIP RAP, TP 1, 24 IN	SY	94	
603-2181	STN DUMPED RIP RAP, TP 3, 18 IN	SY	108	
603-7000	PLASTIC FILTER FABRIC	SY	202	
700-6910	PERMANENT GRASSING	AC	10	
700-7000	AGRICULTURAL LIME	TN	60	
700-8000	FERTILIZER MIXED GRADE	TN	7	
700-8100	FERTILIZER NITROGEN CONTENT	LB	500	
716-2000	EROSION CONTROL MATS, SLOPES	SY	1667	

SIGNING & MARKING

611-5551	RESET SIGN	EA	23	
636-1033	HIGHWAY SIGNS, TP 1 MATL, REFL SHEETING, TP 9	SF	374	
636-1036	HIGHWAY SIGNS, TP 1 MATL, REFL SHEETING, TP 11	SF	71	
636-2070	GALV STEEL POSTS, TP 7	LF	1230	
636-2080	GALV STEEL POSTS, TP 8	LF	165	
636-2090	GALV STEEL POSTS, TP 9	LF	32	
636-5020	DELINEATOR, TP 2	EA	40	
652-5452	SOLID TRAFFIC STRIPE, 5 IN, YELLOW	LF	2668	
652-5701	SOLID TRAF STRIPE, 24 IN, WHITE	LF	70	
652-6502	SKIP TRAFFIC STRIPE, 5 IN, YELLOW	GLF	13073	

.

Truman Linear Park Ph 2-A 0007631 Revised 6/20/2018, changes shown in BOLD

ITEM	DESCRIPTION	UNITS	QUANTITY	UNIT PRICE	AMOUNT
653-0110	THERMOPLASTIC PVMT MARKING, ARROW, TP 1	EA	1		
653-0120	THERMOPLASTIC PVMT MARKING, ARROW, TP 2	EA	5		
653-1501	THERMOPLASTIC SOLID TRAF STRIPE, 5 IN, WHITE	LF	175		
653-1502	THERMOPLASTIC SOLID TRAF STRIPE, 5 IN, YELLOW	LF	404		
653-1704	THERMOPLASTIC SOLID TRAF STRIPE, 24 IN, WHITE	LF	298		
653-1804	THERMOPLASTIC SOLID TRAF STRIPE, 8 IN, WHITE	LF	4299		
653-6004	THERMOPLASTIC TRAF STRIPING, WHITE	SY	26		
653-6006	THERMOPLASTIC TRAF STRIPING, YELLOW	SY	20		
654-1001	RAISED PVMT MARKERS TP 1	EA	11		
654-1003	RAISED PVMT MARKERS TP 3	EA	8		
656-0050	REMOVE EXIST SOLID TRAF STRIPE, 5 IN, THERMOPLASTIC	LF	200		

SIGNALIZATION

636-1033	HIGHWAY SIGNS, TP 1 MATL, REFL SHEETING, TP 9	SF	24	
636-1036	HIGHWAY SIGNS, TP 1 MATL, REFL SHEETING, TP 11	SF	40	
636-1041	HIGHWAY SIGNS, TP 2 MATL, REFL SHEETING, TP 9	SF	30	
639-3004	STEEL STRAIN POLE, TP IV , INCL 65FT MAST ARM	EA	1	
647-1000	TRAFFIC SIGNAL INSTALL NO - 1, PED SIGNAL UPGRADE, EISEN AT SALLIE M	LS	1	
647-1000	TRAFFIC SIGNAL INSTALL NO - 1, PED SIGNAL UPGRADE, EISEN AT TRUMAN SB	LS	1	
647-1000	TRAFFIC SIGNAL INSTALL NO - 1, PED SIGNAL UPGRADE, EISEN AT TRUMAN NB	LS	1	
647-1000	TRAFFIC SIGNAL INSTALL NO - 1, PED HYBRID BEACON ON DERENNE	LS	1	
682-6233	CONDUIT, NONMETL, TP 3, 2 IN	LF	240	
682-9950	DIRECTIONAL BORE - 7 IN	LF	90	
926-2075	900 Mhz DIRECTIONAL RADIO ANTENNA AND CONNECTING CABLE	EACH	2	

Truman Linear Park Ph 2-A 0007631 Revised 6/20/2018, changes shown in BOLD

ITEM	DESCRIPTION	UNITS	QUANTITY	UNIT PRICE	AMOUNT
	STRUCTURES				
500-3101	CLASS A CONCRETE	CY	30		
502-1200	BRIDGE TIMBER, TREATED	MBM	120		
511-1000	BAR REINF STEEL	LB	3240		
520-2214	PILING, PSC, 14 IN SQ	LF	340		
520-2500	PILING, TIMBER - TREATED	LF	5800		
520-3214	TEST PILE, PSC, 14 IN SQ	EA	4		
520-4214	LOAD TEST, PSC, 14 IN SQ	EA	2		
534-1000	PEDESTRIAN OVERPASS BRIDGE, STA - BR 1 & 2	LS	2		
603-2024	STN DUMPED RIP RAP, TP 1, 24 IN	SY	200		
603-7000	PLASTIC FILTER FABRIC	SY	200		

	WATER			
611-5590	RELOCATE WATER METER, 1 1/2 IN	EA	1	
611-8050	ADJUST MANHOLE TO GRADE	EA	6	
611-8120	ADJUST WATER METER BOX TO GRADE	EA	1	
611-8140	ADJUST WATER VALVE BOX TO GRADE	EA	6	
660-2330	INSERTION VALVE, 10 IN	EA	2	
670-1100	WATER MAIN, 10 IN	LF	32	
670-1500	CAP OR REMOVE EXISTING WATER MAIN	EA	2	
670-2060	GATE VALVE, 6 IN	EA	3	
670-3066	TAPPING SLEEVE & VALVE ASSEMBLY, 6 IN X 6 IN	EA	2	
670-4000	FIRE HYDRANT	EA	3	
670-5015	WATER SERVICE LINE, 1 1/2 IN	LF	35	
670-9742	RELOCATE EXISTING BACKFLOW PREVENTION ASSEMBLY, 1 1/2IN	EA	1	
670-9920	REMOVE EXISTING FIRE HYDRANT	EA	2	

Truman Linear Park Ph 2-A 0007631 Revised 6/20/2018, changes shown in BOLD

ITEM	DESCRIPTION	UNITS	QUANTITY	UNIT PRICE	AMOUNT
	LIGHTING				
647-2120	PULL BOX, PB-2	EA	18		
681-1120	LIGHTING STD, ALUM 12 FG MH, POST TOP	EA	7		
681-1150	LIGHTING STD, ALUM, 14 FT MH, POST TOP	EA	90		
681-6268	LUMINAIRE, TP 2, LED, 4000k	EA	90		
682-1404	CABLE, TP XHHW, AWG NO 10	LF	3680		
682-1405	CABLE, TP XHHW, AWG NO 8	LF	6800		
682-1406	CABLE, TP XHHW, AWG NO 6	LF	19200		
682-1407	CABLE, TP XHHW, AWG NO 4	LF	7210		
682-1408	CABLE, TP XHHW, AWG NO 2	LF	22300		
682-6222	CONDUIT, NONMETL, TP 2, 2 IN	LF	9800		
682-6225	CONDUIT, NONMETL, TP 2, 2 1/2 IN	LF	300		
682-9000	MAIN SERVICE PICK UP POINT	LS	3		
682-9022	ELECTRICAL JUNCTION BOX, REINFORCED PLASTIC MORTAR	EA	28		
682-9950	DIRECTIONAL BORE - 3 IN	LF	4440		
936-1000	CCTV SYSTEM - 3 PEDESTRIAN CALL BOXES WITH COVERT CAMERAS	EA	1		

LANDSCAPING

222-1002	AGGREGATE DRAINAGE COURSE, TP 2	TN	448		
457-1005	GEOGRID REINFORCEMENT, TP A	SY	862		
702-0675	MYRICA CERIFERA - 30 GAL	EA	102		
	TOTAL CONSTRUCTION COST:				

NAME / TITLE

COMPANY

ADDRESS

PHONE / FAX

E-MAIL

Bridge Foundation Investigation (BFI # 1)

Truman Liner Park Trail- Phase II P.I. No. 0007631 CSHPP-0007-00 (631), Chatham County

> January 22, 2018 Terracon Project No. ES165111

> > Prepared for: McGee Partner, Inc. Atlanta, Georgia

Prepared by: Terracon Consultants, Inc. Savannah, Georgia

January 22, 2018

McGee Partner, Inc. 13 Corporate Blvd., N.E. Suite 200 Atlanta, Georgia 30329

- Attn: Tommy Crochet
 - P: (770) 938-6400
 - E: tcrochet@mcgeepartners.com

Re: Bridge Foundation Investigation (BFI # 1)-Revision 5 Truman Liner Park Trail- Phase II P.I.No. 0007631 CSHPP-0007-00 (631), Chatham County Terracon Project No.: ES165111

Dear Mr. Crochet:

Terracon Consultants, Inc. (Terracon) is pleased to submit this report of Bridge Foundation Investigation for the design and construction of the prefabricated bridge over Casey Canal. This report has been prepared in general accordance with the QA / QC Manual by the Geotechnical Engineering Bureau of the Georgia Department of Transportation.

This report has been revised from the previous version dated December 21, 2017 to address the comments made by the Georgia Department of Transportation via. phone conversation.

Terracon appreciates the opportunity to be of service to you on this project. Should you have any questions concerning this report, or if we may be of further service, please feel free to contact us.

Sincerely, Terracon Consultants, Inc.

JUPINA

Biraj Gautam, P.E. Project Geotechnical Engineer cc: 1 - Client (PDF) 1 - File

Guoming Lin, Ph.D., P.E., D.GE. Senior Principal/Senior Consultant

Terracon Consultants, Inc. 2201 Rowland Avenue Savannah, Georgia 31404 P (912) 629 4000 F (912) 629 4001 terracon.com/savannah Bridge Foundation Investigation (BFI # 1) Revision 5 Truman Liner Park Trail Phase II = CSHPP-0007-00(631), Chatham County January 22, 2018 = Terracon Project No. ES1651111 = PI No. 0007631

Bridge Foundation Investigation (LRFD) CHSHPP-0007-00(631), Chatham County PI No. 0007631 January 22, 2018 Revision No. 5

LOCATION (See Map) Casey Canal near Lake Mayer in Savannah, Chatham County, Georgia.

GENERAL INFORMATION

GEOLOGIC FORMATION The project is geologically sited in the Princess Anne Shoreline Complex of the Georgia Coastal Plain Region.

SUBSURFACE FEATURES In general, the subsurface soils predominantly consist of loose to dense clean / silty sands in the upper 42 feet below grade (approx. EL -37), followed by very dense silty sands to the termination of borings at approximately 55 and 60 feet below grade (approx. El. -50 and -56). Groundwater was encountered at approximately 5 to 6 feet below grade (approx. El. -1) at the time of field exploration.

Groundwater level fluctuations may occur due to seasonal variations in the amount of rainfall, runoff and other factors not evident at the time the borings were performed. Therefore, groundwater levels during construction or at other times in the life of the structure may be higher or lower than the levels indicated on the boring logs. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project.

SITE CLASSIFICATION We recommend a site class of D per AASHTO LRFD 3.10.3.1.

1.0 FOUNDATION RECOMMENDATIONS

Bents	Drilled Shaft	Spread Footing	Pile Footing (Type)	Pile Bent (Type)
Bridge Begin (Sta. 100+53)				PSC
Bridge End (Sta. 101+33)				PSC

Bridge Foundation Investigation (BFI # 1) Revision 5 Truman Liner Park Trail Phase II
CSHPP-0007-00(631), Chatham County January 22, 2018
Terracon Project No. ES1651111
PI No. 0007631

1.1 Pile Properties

		Nominal	Nominal Tension Stress (ksi)		Maximum Factored
Pile Type	Pile Size (in)	Compression Stress (ksi)	Normal Env.	Severe Env.	Structural Resistance (kips)
PSC	14 x 14	3.214	1.248	-	473

1.2 DESIGN LOADS

Bents	Maximum Factored Foundation Load (kips)	Service Load (kips)
Bridge Begin (Sta. 100+53)	60	40
Bridge End (Sta. 101+33)	60	40

2.0 FOUNDATION LOADS

	2.1	PILE FC	DUNDATION LC	DADS	
Bents	Pile Type	Size (in)	Down Drag (kips)	Scour (kips)	Driving Resistance (kips)*
Bridge Begin (Sta. 100+53)	PSC	14	-	-	93
Bridge End (Sta. 101+33)	PSC	14	-	-	93

3.0 FOUNDATION ELEVATIONS

Bents	Bottom of Spread Footing	Minimum Tip (Elevation)	Estimated Tip (Elevation)
Bridge Begin (Sta. 100+53)		-35	-40
Bridge End (Sta. 101+33)		-35	-40

5.0 GENERAL NOTES

Elevations The elevations are based on the drawing (Drawing Sheet No. 13-0001) provided by McGee Partners, Inc. Below are the elevations of the existing ground surface at each borehole location.

Bridge Foundation Investigation (BFI # 1) Revision 5 Truman Liner Park Trail Phase II
CSHPP-0007-00(631), Chatham County January 22, 2018
Terracon Project No. ES1651111
PI No. 0007631

	B1: 5.0	B2: 4.	0
Waiting Period	None required.		•
As Built Foundation Information	The as built foundation Geotechnical Engineering l system.	information should be for a should be for a second structure of the second structure of the second structure of	orwarded to the of the foundation
	5.1 PILE FOUN	DATION NOTES	
PDO	Driving resistance after minimu with Special Provision 520 F Dynamic Pile Testing. Perform and Bridge End (Sta. 101+33) should be performed before an	um tip elevations are achie Piling for LRFD and Spect on one PDA test at Bridge Be bents with a total of two F by additional production pile	ved in conjunction ial Provision 523 egin (Sta. 100+53) PDA tests. These s are driven.
* Nominal Bearing Resistance of Single Pile	Diving resistance is based or resistance factor Ø _{dyn} AASHT	1 the following field verific CLRFD 2010 (10.5.5.2.3-1)	ation method and):
5	Resistance Determ	ination Method	Resistance Factor
	Driving criteria established by least two piles based on the less than 2% of the prod resistance should be based performed at least four days account for the setup effect.	y dynamic testing of at site conditions, but no uction piles. The pile on PDA restrike test after the initial driving to	0.65
Drivability	A drivability analysis has been their respective estimated tips Impact Hammer used.	completed on the above-r with APE Model D16-42 Si	mentioned piles to ngle Acting Diesel
Pre-drilling	The Contractor may choose p piles through dense soil layers Section 520. If pre-drilling i minimum tip elevations and construction:	re-drilling to assist in the in at both end bents as per s used, it should be to may be adjusted by the	nstallation of PSC Special Provision 3 feet above the Engineer during
	No separate payment will be drilling. The maximum dia determined from the following t	made if the Contractor cho meter of the pre-drilled table:	ooses to use pre- hole should be

Pile Size - PSCMaximum Pre-Drill Hole Size - PSC14"12"

4

Bridge Foundation Investigation (BFI # 1) Revision 5 Truman Liner Park Trail Phase II CSHPP-0007-00(631), Chatham County January 22, 2018 - Terracon Project No. ES1651111- PI No. 0007631

Test Piles	We recommend that PSC test piles be set up at Bridge Begin (Sta. 100+53) and Bridge End (Sta. 101+33) bents (the same locations as the PDA tests) to help determine pile order lengths. The test piles should be of sufficient length to reach a depth of 5 feet below the Estimated Tip Elevation.			
Special Problems	i. ii.	Erratic pile lengths can be expected. The contractor should be made aware of the utility and transmission lines near the proposed bridge area.		
		6.0 QA/QC		
Prepared By Reviewed By		Biraj Gautam, P.E. Guoming Lin, Ph.D., P.E., D.GE.		

ENCLOSED

Appendix A (Field Exploration)

Exhibit A-1	Site Location Map
Exhibit A-2	Exploration Location Plan
Exhibit A-3	Field Exploration Description

- Exhibit A-4 SPT Boring Cross Section
- Exhibit A-5 Typical Soil Profile and the Proposed Bridge
- Exhibit A-6 SPT Boring Logs

Appendix B (Laboratory Testing)

- Exhibit B-1 Summary of Laboratory Test Results
 - (a) Grain Size Analysis Result
 - (b) Atterberg Limit Test Result

Bridge Foundation Investigation (BFI # 1) Revision 5 Truman Liner Park Trail Phase II = CSHPP-0007-00(631), Chatham County January 22, 2018 = Terracon Project No. ES1651111= PI No. 0007631

Appendix C (Supporting Document)

- Exhibit C-1 Pile Axial Capacity Analysis Results
- Exhibit C-2 General Notes
- Exhibit C-3 Unified Soil Classification System
- Exhibit C-4 Special Provision Section 520- Piling for LRFD
- Exhibit C-5 Special Provision Section 523- Dynamic Pile Testing
- Exhibit C-6 GRLWEAP Analysis Results

APPENDIX A FIELD EXPLORATION

- Exhibit A-1 Site Location Map
- Exhibit A-2 Exploration Location Plan
- Exhibit A-3 Field Exploration Description
- Exhibit A-4 SPT Boring Cross Section
- Exhibit A-5 Typical Soil Profile and the Proposed Bridge
- Exhibit A-6 SPT Boring Logs

Image Courtesy of
Google Earth [™]

Project Manager:	BG	PI No.	0007631	
Drawn by:	BG	Scale:	N.T.S.	llerra
Checked by:	GL	File Name:	ES165111	Consulting Engineers
Approved by:	GL	Date:	12/6/2016	2201 Rowland Avenue Sam Phone (912) 629 4000

277	JCON	
ulting En	gineers & Scientists	
Avenue	Savannah, Georgia 31404	
9 4000	Fax (912) 629 4001	11

SITE		MAD
SILE	LUCATION	IVIAP

Exhibit:

A-1

Truman Liner Park Trail- Phase II BFI # 1- Near Lake Mayer Savannah, Chatham County, Georgia

Image Courtesy of Google Earth ${}^{{}^{\rm TM}}$

NOTE:

ALL THE EXPLORATION LOCATIONS WERE LOCATED IN THE FIELD USING A GPS UNIT, AND THE EXPLORATION LOCATIONS SHOULD BE CONSIDERED APPROXIMATE. DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES. LEGEND SPT Boring

Project Manager:	BG	PI No. 0007631		EXPLORATION LOCATION PLAN	Exhibit:
Drawn by:	BG	Scale: N.T.S.	lierracon	Truman Liner Park Trail- Phase II	
Checked by:	GL	File Name: ES165111	Consulting Engineers & Scientists	BFI#1- Near Lake Mayer	A-2
Approved by:	GL	Date: 12/6/2016	2201 Rowland Avenue Savannah, Georgia 31404 Phone (912) 629 4000 Fax (912) 629 4001	Savannah, Chatham County, Georgia	· · · -

Bridge Foundation Investigation

Truman Liner Park Trail- Phase II Savannah, Chatham County, Georgia January 22, 2018 Terracon Project No. ES165111 PI No. 0007631

Field Exploration Description

The locations of the SPT borings were determined by Terracon based on the proposed plan and discussed with the civil engineers prior to performing the field exploration. The boring locations were located in the field using a hand-held GPS unit and in reference to the existing features. The locations of the exploration points are shown in the Exploration Location Plan and should be considered approximate.

Standard Penetration Testing

The SPT borings were performed in accordance with ASTM D 1586 with a track-mounted drilling rig using hollow stem auger methods. Samples of the soil encountered in the borings were obtained using split-barrel sampling procedures. In the split barrel sampling procedure, the number of blows required to advance a standard 2-inch O.D. split barrel sampler the last 12 inches of the typical total 18-inch penetration by means of a 140-pound hammer with a free fall of 30 inches, is the standard penetration resistance value (SPT-N). This value is used to estimate the in situ relative density of cohesionless soils and consistency of cohesive soils. A rope and cathead hammer was used to advance the split-barrel sampler in the borings performed on this site.

Upon completion, the data collected were analyzed and processed by the project engineer.

1[erracon

Source: FHWA NHI-06-088

BORING LOG NO. B1 Page 1 of 2												
PROJECT: Truman Liner Park Trail-Phase)	CLIENT:	McGe	e Par	tner	, Inc.		C				
II SITE: Savannah, Chatham County, G	eorg	а										
U LOCATION See Exhibit A-2 Latitude: 31.9957° Longitude: -81.0899° Latitude: 31.9957° Longitude: -81.0899°	Sur	rface Elev.: 5 (F	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	PERCENT FINES	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI			
2.0	е	ELEVATION (F	<u>3</u>			12-20-15-16 N=35						
SANDY LEAN CLAY (CL), dark brown, hard			1	_		9-15-20-20 N=35						
6.0 POORLY GRADED SAND WITH CLAY (SP-S 6.0 medium dense	<u>-1</u> 5-		X	9-15-7-9 N=22								
8.0	-3		X	2-3-3-4 N=6		41	46-35-11					
SILT SAID (SM), the granied, dark blown,	10056		10-	-	Å	2-2-2-3 N=4						
POORLY GRADED SAND WITH CLAY (SP-S gray, very dense		-		17-38-42 N=80	10.1	26						
17.0 SANDY SILT (ML), gray, medium stiff	- <u>12</u>	_										
			20-	-	X	3-3-3 N=6						
POORLY GRADED SAND (SP), fine to coarse	e	- <u>1/</u>	-		4-4-5 N=0							
27.0 POORLY GRADED SAND WITH SILT (SP-SM	/), fine grained, dark		- <u>22</u>	-								
gray, loose			30-	-	X	3-3-6 N=9	10.9	36				
32.0 POORLY GRADED SAND (SP), fine grained,	gray, medium dense	9	-27									
			35	_	X	6-10-9 N=19						
fine grained, gray, medium dense				-		8-10-9						
Stratification lines are approximate. In-situ, the transition may be gradual.				Hamr	mer Ty	pe: Rope and Cath	ead					
Advancement Method:				Notes								
Abandonment Method:	See Appendix B for desc procedures. See Appendix B for desc procedures and addition See Appendix B for expl abbreviations.	cription of field cription of labor nal data (if any). lanation of symb	atory ools and	NUCS								
WATER LEVEL OBSERVATIONS				Boring	Started	1: 7/29/2016	Boring Com	pleted:	7/29/2016			
		900		Drill Rig	g: CME	-45	Driller: Carl					
2201 Rowland Avenue						S165111	Exhibit [:] A-6-1					

BORING LOG NO. B1 Page 2 of 2											
PR	OJECT: Truman Liner Park Trail-Phase	McGe Atlant	e Pai	rtner	, Inc.						
SIT	E: Savannah, Chatham County, Ge	orgia		Anam	a, O	Jorgi	u				
GRAPHIC LOG	LOCATION See Exhibit A-2 Latitude: 31.9957° Longitude: -81.0899°	Su	rface Elev.: 5 (F	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	PERCENT FINES	WATER CONTENT (%)	Atterberg Limits LL-PL-PI	
	POORLY GRADED SAND (SP), fine grained, gr (continued)	ay, medium dense	ELEVATION (F)	_						
	SILTY SAND (SM), fine grained, gray, very den	se		. <u>57</u>	_						
				45	-	X	25-50/5" N=50/5"	<u> </u>	25		
	fine grained, dark gray, very dense		50	_	X	25-35-50 N=85					
	very dense, No recovery			50 55	-		25-50/5" N=50/5"				
	Boring Terminated at 55 Feet			- 55	_						
				60	_						
					_						
				65	_						
					-						
				70	_						
					_						
				75	_						
					_						
				80	_		Dava and Oath				
	Stratification lines are approximate. In-situ, the transition may	be gradual.			Ham	mer Iy	be: Rope and Cath	iead			
Advan Muc Aband	cement Method: S Rotary P S ponment Method: S a	ee Exhibit A-3 for deso rocedures. ee Appendix B for des rocedures and additior ee Appendix B for exp bbreviations.	or description of field Notes: for description of laboratory additional data (if any). for explanation of symbols and								
	WATER LEVEL OBSERVATIONS				Boring Started: 7/29/2016 Boring Completed: 7/29						
	At the time of drilling	lierr	900		Drill Ri	g: CME	-45	Driller: Carl			
2201 Rowland Avenue Savannah, Georgia							S165111	Exhibit: A-6-1			

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO LOG-DEPTH TO BOTTOM OF PAGE SPT.GPJ TERRACON2012.GDT 11/30/16

BORING LOG NO. B2

Page 1 of 2

ATTERBERG LIMITS

LL-PL-PI

									Page	1 of 2
PR	OJECT: Truman Liner Park Trail-Phase	lcGee tlanta	e Part a, Geo	ner, orgi	, Inc. a					
SIT	E: Savannah, Chatham County, Georgia	l								
GRAPHIC LOG	LOCATION See Exhibit A-2 Latitude: 31.996° Longitude: -81.0899° DEPTH	Surfa	ce Elev.: 4 (Ft.) EVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	PERCENT FINES	WATER CONTENT (%)	ATTERBE LIMITS
	POORLY GRADED SAND WITH SILT (SP-SM), fine gr 2.0 medium dense	rained, brown,	2	-	-	X	6-9-9-9 N=18			
	SILTY SAND (SM), fine grained, dark brown, medium	dense	0	-		X	3-5-6-9 N=11			
	SANDY LEAN CLAY (CL), dark brown, soft		-2	5-		X	1-2-1-3 N=3		25	
	POORLY GRADED SAND WITH SILT (SP-SM), fine gray, loose	-		X	3-3-6-10 N=9					
	POORLY GRADED SAND (SP), fine grained, gray, me	edium dense		10-		X	3-6-9-10 N=15			
	fine grained, gray, medium dense	15-		X	6-10-12 N=22	4.7	25			
	fine grained, gray, very loose			20-		X	1-0-2 N=2			
	fine grained, gray, dense		-23	25-		X	14-15-20 N=35			
	POORLY GRADED SAND WITH SILT (SP-SM), fine gr gray, loose	rained, dark	-28	30-		X	7-2-5 N=7	10.2	35	
	POORLY GRADED SAND (SP), fine grained, gray, me	edium dense	-33	35-		X	7-14-10 N=24			
	SILTY SAND (SM), fine grained, dark gray, medium d	ense					5-6-12			
	Charlification lines are preservined. In site, the transition may be used	vel		40-			N=18			
	Stratification lines are approximate. In-situ, the transition may be gradu	uai.			Hamm	ier Typ	be: Rope and Catr	nead		
Advan Muc Aband	Image: comment Method: See Exhit Image: comment Method: See Appe Ionment Method: See Appe Ionment Method: See Appe	bit A-3 for descrip es. endix B for descrip es and additional endix B for explan- tions.	ntion of field ption of laborator data (if any). Nation of symbols	ry s and	Notes:					
\bigtriangledown	WATER LEVEL OBSERVATIONS At the time of drilling				Boring S	tarted	: 7/28/2016	Boring Con	npleted:	7/28/2016
		2201 Rowland	d Avenue		Drill Rig:	CME	-45	Driller: Car		
Savannah, Georgia						NO.: ES	5165111	Exhibit:	А-6-2	

BORING LOG NO. B2 Page 2 of 2												
PR	OJECT: Truman Liner Park Trail-Phase)	CLIENT:	McGe	e Pa	rtner	, Inc.					
SIT	E: Savannah, Chatham County, G	ieorgia		Auan	la, Ge	eorgi	d					
GRAPHIC LOG	LOCATION See Exhibit A-2 Latitude: 31.996° Longitude: -81.0899°	Su	face Elev.: 4 (F	(. t.) DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	PERCENT FINES	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI		
	SILTY SAND (SM), fine grained, dark gray, m	iedium dense <i>(contir</i>	elevation (P nued)		-		27 60/5"					
	tine grained, dark gray, very dense		45		\bigwedge	37-50/5 N=50/5"]					
	fine grained, dark gray, very dense			50	-	X	25-45-50 N=95	24.5	29			
	very dense, No recovery	dense, No recovery					50/5" N=50/5"					
	very dense, No recovery			50	_		35-50/5"					
	Boring Terminated at 60 Feet			65 70 75								
Stratification lines are approximate. In-situ, the transition may be gradual.						mer Ty	pe: Rope and Cath	nead				
Advan Muc Aband	cement Method: Rotary onment Method:	See Exhibit A-3 for desc procedures. See Appendix B for des procedures and addition See Appendix B for exp abbreviations.	cription of field cription of labor al data (if any). lanation of syml	atory pols and	Notes	:						
\bigtriangledown	WATER LEVEL OBSERVATIONS			Boring Com	pleted:	7/28/2016						
					Drill Ri	g: CME	-45	Driller: Carl				
			Project	No.: E	S165111	Exhibit: A-6-2						

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO LOG-DEPTH TO BOTTOM OF PAGE SPT.GPJ TERRACON2012.GDT 11/30/16

APPENDIX B LABORATORY TESTING

Exhibit B-1 Summary of Laboratory Test Results

(a) Atterberg Limit Test Result

(b) Grain Size Analysis Result

Terracon Project Name: Truman Liner Park Trail-Phase II Terracon Project No.: ES165111 Project Location: Savannah, Chatham County, Georgia PI No.: 0007631

Summary of Soil Laboratory Test

Borehole	Sample Depth (ft)	Elevation (ft)	Material Description	SOSU	Natural Moisture content (%)	Liquid Limit (%)	Plastic Limit (%)	Plastic Index (%)	Cu	Cc	D90 (mm)	D60 (mm)	D30 (mm)	% Gravel	%Sand	%Fine
D1	6 to 8	-1 to -3	Sandy silt	ML	41.3	46	35	11	-	1						
	13.5 to 15	-8.5 to -10	Fine sand with silt	SP-SM	26.4		-		2.11	0.87	0.230	0.158	0.102	0.0	89.9	10.1
ы	28.5 to 30	-23.5 to -25	Fine sand with silt	SP-SM	35.8		-		2.43	0.81	0.600	0.179	0.103	0.8	88.2	10.9
	43.5 to 45	-38.5 to -40	Silty sand	SM	25.3		-		-	1	0.130	0.112	0.087	0.0	86.9	13.0
	4 to 6	0 to -2	Sandy clay	CL	25.3		-		-	1						
50	13.5 to 15	-9.5 to -11	Poorly graded sand	SP	24.8		-		2.11	0.96	0.240	0.173	0.117	0.0	95.2	4.7
DZ	28.5 to 30	-24.5 to -26	Fine sand with silt	SP-SM	34.7				2.26	0.86	0.550	0.169	0.104	0.0	86.4	10.2
	48.5 to 50	-44.5 to -46	Silty sand	SM	29.2						0.130	0.105	0.079	0.0	75.2	24.5

Note: Following surface elevations are based on the drawing (Drawing Sheet No. 13-0001) provided by McGee Partners, Inc.

B1: 5

B2: 4

ATTERBERG LIMITS SPT.GPJ TERRACON2012.GDT 11/30/16 -ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

GRAIN SIZE DISTRIBUTION

GRAIN SIZE DISTRIBUTION

GRAIN SIZE: USCS 1 SPT.GPJ TERRACON2012.GDT 11/30/16 ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

APPENDIX C SUPPORTING DOCUMENT

- Exhibit C-1 Pile Axial Capacity Analyses
- Exhibit C-2 General Notes
- Exhibit C-3 Unified Soil Classification System
- Exhibit C-4 Special Provision Section 520- Piling
- Exhibit C-5 Special Provision Section 520- Piling for LRFD
- Exhibit C-6 Special Provision Section 523- Dynamic Pile Testing
- Exhibit C-7 GRLWEAP Analysis Results

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	RELATIVE DENSITY (More than 50% reta Density determined by Sta Includes gravel	OF COARSE-GRAINED SOILS ined on No. 200 sieve.) ndard Penetration Resistance s, sands and silts.	CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance			
SMS	Descriptive Term (Density)	Std. Penetration Resistance (blows per foot)	Descriptive Term (Consistency)	Undrained Shear Strength (kips per square foot)	Std. Penetration Resistance (blows per foot)	
TER	Very Loose	0 - 3	Very Soft	less than 0.25	0 - 1	
ЗTH	Loose	4 - 9	Soft	0.25 to 0.50	2 - 4	
LENG	Medium Dense	10 - 29	Medium-Stiff	0.50 to 1.00	5 - 7	
S	Dense	30 - 50	Stiff	1.00 to 2.00	8 - 14	
	Very Dense	> 50	Very Stiff	2.00 to 4.00	15 - 30	
			Hard	above 4.00	> 30	

RELATIVE PROPORTIONS OF SAND AND GRAVEL

Descriptive Term(s) of other constituents

Trace With

Modifier

Percent of Dry Weight < 15 15 - 29 > 30

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s) of other constituents Trace With Modifier Percent of Dry Weight < 5 5 - 12 > 12 **GRAIN SIZE TERMINOLOGY**

Descriptive Term(s) of other constituents

<u>Percent of</u> Dry Weight

Boulders Cobbles Gravel Sand Silt or Clay Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

PLASTICITY DESCRIPTION

<u>Term</u> Non-plastic Low Medium High 0 1 - 10 11 - 30 > 30

lerracon

Exhibit C-2

UNIFIED SOIL CLASSIFICATION SYSTEM

Criteria fe		Soil Classification			
				Group Symbol	Group Name [₿]
Coarse Grained Soils	Gravels	Clean Gravels	$Cu \geq 4 \mbox{ and } 1 \leq Cc \leq 3^{\mbox{\tiny E}}$	GW	Well-graded gravel ^F
More than 50% retained	More than 50% of coarseLefraction retained on	Less than 5% fines ^c	$Cu < 4 \ and/or \ 1 > Cc > 3^{\text{E}}$	GP	Poorly graded gravel ^F
on No. 200 sieve		Gravels with Fines More	Fines classify as ML or MH	GM	Silty gravel ^{F,G, H}
		than 12% fines ^c	Fines classify as CL or CH	GC	Clayey gravel ^{F,G,H}
	Sands	Clean Sands	$Cu \geq 6 \text{ and } 1 \leq Cc \leq 3^{\text{E}}$	SW	Well-graded sand
	50% or more of coarse fraction passes No. 4 sieve	Less than 5% fines ^D	$Cu < 6$ and/or $1 > Cc > 3^{\text{E}}$	SP	Poorly graded sand
		Sands with Fines More than 12% fines ^D	Fines classify as ML or MH	SM	Silty sand ^{G,H,I}
			Fines Classify as CL or CH	SC	Clayey sand ^{G,H,I}
Fine-Grained Soils	Silts and Clays Liquid limit less than 50	inorganic	$PI > 7$ and plots on or above "A" line $\ensuremath{^{_{\!\!\!\!\!\!}}}$	CL	Lean clay ^{K,L,M}
50% or more passes the No. 200 sieve			PI < 4 or plots below "A" line ^J	ML	Silt ^{K,L,M}
		organic	Liquid limit - oven dried		Organic clay ^{K,L,M,N}
			Liquid limit - not dried	OL	Organic silt ^{K,L,M,O}
	Silts and Clays	inorganic	PI plots on or above "A" line	СН	Fat clay ^{K,L,M}
	Liquid limit 50 or more		PI plots below "A" line	MH	Elastic Silt ^{K,L,M}
		organic	Liquid limit - oven dried	ОН	Organic clay ^{K,L,M,P}
			Liquid limit - not dried	OIT	Organic silt ^{K,L,M,Q}
Highly organic soils	Primar	ily organic matter, dark in co	olor, and organic odor	PT	Peat

^ABased on the material passing the 3-in. (75-mm) sieve

- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^C Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- ^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

^ECu =
$$D_{60}/D_{10}$$
 Cc = $\frac{(D_{30})^2}{D_{10} \times D_{60}}$

^F If soil contains ≥ 15% sand, add "with sand" to group name. ^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM. ^HIf fines are organic, add "with organic fines" to group name.

- $^{\rm I}$ If soil contains $\geq 15\%$ gravel, add "with gravel" to group name.
- ^J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- ^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- $^{\rm L}$ If soil contains \geq 30% plus No. 200 predominantly sand, add "sandy" to group name.
- $^{\rm M}$ If soil contains \geq 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- $^{\sf N}\,{\sf PI}\geq 4$ and plots on or above "A" line.
- ^oPI < 4 or plots below "A" line.
- ^P PI plots on or above "A" line.
- ^QPI plots below "A" line.

DEPARTMENT OF TRANSPORTATION STATE OF GEORGIA

SPECIAL PROVISION

CSHPP-0007-00 (631) , Chatham County P.I. NO. 0007631

SECTION 520—PILING

Add the following to Subsection 520.3.05.G:

At the Contractor's option, predrilling may be used to loosen dense soil layers to assist in the installation of piling in lieu of spudding or jetting. To predrill, drill an auger into the ground to the required elevation at the pile location. It is not necessary to remove all material or to provide casing. Use one of the following maximum auger diameters corresponding to the pile size:

ize
<u>iz</u>

There will not be any separate payment made for predrilling.

Office of Materials and Testing

DEPARTMENT OF TRANSPORTATION STATE OF GEORGIA

SPECIAL PROVISION

CSHPP-0007-00 (631) , Chatham County P.I. NO. 0007631

SECTION 520—PILING

Delete Sub-Section 520.3.05.D.1 and substitute the following:

520.3.05.D.1. Determine Driving Resistance

Drive piles in one continuous operation. Determine the driving resistance of the piling based on the method specified in the plans, which will be one of the following methods (a - c):

- a. Upon completion of the dynamic pile testing in accordance with Special Provision Section 523. The pile bearing will be determined by computing the penetration per blow with less than ¼-inch (6-mm) rebound averaged through 12 inches (305 mm) each of penetration. When it is considered necessary by the Engineer, the average penetration per blow may be determined by averaging the penetration per blow through the last 10 to 20 blows of the hammer. In soft material the driving resistance may be determined, at the Engineer's discretion, after delaying driving operations and performing pile restrikes.
- b. Upon completion of the loading test in accordance with Sub-Section 520.3.05.D.2.
- c. Shall not be used when driving pile to hard rock. Using FHWA-modified Gates Formula as provided below:

$$R_{ndr} = 1.75 (E_d)^{0.5} \log_{10} (10N_b) - 100$$
 (kips) U.S units
$$R_{ndr} = 7 (E_d)^{0.5} \log_{10} (10N_b) - 550$$
 (kN) S.I. units

Where:

 R_{ndr} = nominal pile driving resistance measured during pile driving

 E_d = developed hammer energy. This is the kinetic energy in the ram at impact for a given blow. If ram velocity is not measured, it may be assumed equal to the potential energy of the ram at the height of the stroke, taken as the ram weight times the actual stroke (ft-lb for U.S units, kN-m for S.I. units)

 N_b = Number of hammer blows for 1.0 inch of pile permanent set (blows/in)

These resistance formulas apply only when:

- The hammer has a free fall.
- The head of the pile is not broomed, crushed, spalled, or excessively crimped.
- The penetration rate is reasonably uniform.

Determining driving resistance by formula is not a Pay Item. Provide the facilities for determining driving resistance by formula as an incidental part of the work.

Once the driving resistance has been determined by one of the methods noted above, do not continue to drive piles if the Engineer determines that the piles have reached practical refusal. Practical refusal is defined as 20 blows per inch with the hammer operating at the highest setting or setting determined by the Engineer and less than ¹/₄-inch (6-mm) rebound per blow. The Engineer will generally make this determination within 2 inches (51 mm) of driving. However, the Engineer will not approve the continuation of driving at practical refusal for more than 12 inches (305 mm). When the required pile penetration cannot be achieved by driving without exceeding practical refusal, use other penetration aids such as jetting, spudding, predrilling or other methods approved by the Engineer.

d. Wave Equation: Use the Wave Equation Analysis for Piles (WEAP) program to evaluate the suitability of the proposed driving system chosen from the methods noted above (including the hammer, follower, capblock and pile cushions) as well as to estimate the driving resistance to achieve the pile bearing requirements and to evaluate pile driving stresses. Use the WEAP program to show that the hammer is capable of driving to a driving resistance equal 130% (1.3 times) the driving resistance shown in the Plans without overstressing the piling in compression or tension and without reaching practical refusal.

Perform the WEAP analysis with personnel who are experienced in this type work, and have performed this analysis on a minimum of 15 projects. Provide a list of the qualifications and experience of the personnel to perform the WEAP analysis for this Project.

The Engineer may modify the scour resistance shown in the plans if the dynamic pile test is used to determine the actual soil resistance through the scour zone. Also, the Engineer may make modifications in scour resistance when the Contractor proposes drilling and/or jetting to reduce the soil resistance in the scour zone.

A minimum of two weeks prior to beginning any pile driving operations, submit to the Engineer for evaluation and approval the following information on all of the proposed pile driving system(s) to be used on the Project including but not limited to:

- i. Items on Pile Driving Equipment Data Sheet
- ii. Other information on the driving system required by the Engineer
- iii. A WEAP program output indicating the approximate depth or elevation where the pile will achieve the bearing required
- iv. Valid Driving Criteria.

Valid driving criteria is defined as having the required hammer having a hammer set greater than 3 blows per inch and less than 10 blows per inch at the driving resistance for that pile.

If WEAP analyses show that the hammer(s) will overstress the pile, modify the driving system or method of operation as required to prevent overstressing the pile. Resubmit the modified pile driving system information and WEAP program output to the Engineer for re-evaluation. Do not begin pile driving operations until the Engineer has approved the qualifications of the personnel, the WEAP program output, and the pile driving system(s).

Approval of the pile driving system(s) is also based on satisfactory field trials with dynamic pile testing. Obtain approval from the Engineer for the pile driving system(s) based on satisfactory field performance.

If piles require different hammer sizes, the Contractor may elect to drive with more than one size hammer or with a variable energy hammer, provided that the hammer is properly sized and cushioned, will not damage the pile, and will develop the required resistance.

For penetration of weak soils by concrete piles, use thick cushions and/or reduced stroke to control tension stresses during driving.

Office of Materials and Testing

Pile Driving Data Form

Contract ID: Structure Name: PI Number: Structure No.: Pile Driving Contractor: County Manufacturer: _____ Model No. _____ Hammer Type: _____ Serial No. _____ Manufacturers Maximum Rated Energy: _____(ft-k) Stroke at Maximum Rated Energy: _____(ft) Hammer Range in Operating Energy: ______ to _____(ft-k) Range in Operating Stroke: ______ to _____(ft) Ram Weight: ______ (kips) Modifications: _____ Weight: _____(kips) Diameter: _____(in) Striker Plate Thickness: _____(in) Material 1 Material 2
 Name:
 Name:

 Area:
 _____(in²)
 Area: (in²)
 Name: _____ Hammer Thickness/Plate: ____(in) Thickness/Plate:____(in) Cushion No. of Plates: _____ No. of Plates: _____ Total Thickness of Hammer Cushion: _____(in) Weight including inserts: (kips) Helmet Material: Area: _____(in²) Thickness/Sheet: ____(in) Pile No. of Sheets: Cushion Total Thickness of Pile Cushion: _____(in) Pile Type: _____ Wall Thickness: _____(in) Taper: _____ Cross Sectional Area: ___(in²) Weight/Meter: _____ Ordered Length: _____(ft) Pile Driving Resistance: _____(kips) Description of Splice: Driving Shoe/Closure Plate Description: Submitted By: _____ Date: _____

DEPARTMENT OF TRANSPORTATION STATE OF GEORGIA

SPECIAL PROVISION

CSHPP-0007-00 (631) , Chatham County P.I. NO. 0007631

SECTION 523 - DYNAMIC PILE TESTING

523.1 General Description

The work consists of performing dynamic pile testing using the Pile Driving Analyzer (PDA) to monitor the driving of piles with accelerometer and strain gauges attached to the piles. Piles to be dynamically tested will be identified in the Special Provision or on the Plans. Prior to pile driving, the Engineer will determine production or test piles to be dynamically tested. Perform the dynamic pile testing in accordance with ASTM D4945-12.

Take dynamic measurements during driving of any required piles. Drive the pile as shown in the Special Provisions or on the Plans.

523.2 Materials

Furnish measuring instruments for dynamic pile testing. Attach instruments near the top of the piles with bolts placed in drilled holes. Furnish materials, labor and equipment necessary for installation of the instruments.

523.3 Construction Requirements

Measure wave speed prior to driving piles. Wave speed measurements will not be required for Steel H piles or metal shell piles. When wave speed measurements are performed, place the piles in a horizontal position not in contact with other piles.

Perform dynamic pile testing during driving. Modify the driving to reduce the stress and/or eliminate the damage, should the recommended stress level be exceeded or if damage occurs (determined visually or as indicated by the instrumentation).

Do not exceed the following maximum driving stresses, as determined by the dynamic pile testing:

1. For Steel piles:

0.9 Fy, where Fy = Yield strength of steel

2. For Prestressed Concrete Piles:

Compression:

 $\sigma_{dr} = (0.85f'_c - f_{pe})$

Tension in Normal Environments:

 $\sigma_{dr} = (0.095\sqrt{f'_c} + f_{pe})$

Tension in Severe Corrosive Environments:

 $\sigma_{dr} = \varphi_{da} f_{pe}$

where;

 σ_{dr} = maximum allowed driving stress, ksi f'c= specified minimum 28-day compressive strength of concrete, ksi fpe= effective prestress in concrete, ksi, (after all losses) at the time of driving taken as 0.78 times the initial prestress force

Re-drive friction piles that do not obtain bearing after a freeze period of a minimum of 24 hours or for a period designated on the Plans, whichever is longer. Reset the gauges if required. Re-strike the pile with a warm hammer until a maximum penetration of 3 inches (76 mm) or 40 blows is reached, whichever occurs first. The Engineer may modify the Pile Driving Objective based on the results of the PDA work.

Provide two weeks' notice prior to the driving of designated piles and cooperate with the Engineer in connection with the performance of Dynamic Pile Testing.

Provide a complete report consisting of but not limited to PDA field monitoring data, results of CAPWAP computer analyses, and recommendations such as pile lengths, hammer fuel setting, and valid driving criteria. Valid driving criteria is defined as having the required hammer having a hammer set greater than 3 blows per inch and less than 10 blows per inch at the driving resistance for that pile. Submit the report electronically in PDF format and the electronic data files of the PDA analysis and CAPWAP to the Geotechnical Bureau and allow seven (7) calendar days for review and approval before proceeding with driving production piles.

523.4 Measurement

The Dynamic Pile Tests performed in accordance with these Specifications will be counted separately for payment. (Refer to plans summary sheet for the required amount of PDA testing.)

523.5 Payment

The Dynamic Pile Test completed and accepted will be paid for at the Contract unit Price. This payment will be full compensation for all costs of complying with this specification, including incidentals, additional work, and any delays incurred in conjunction therewith.

Payment will be made under:

Item No. 523. Dynamic Pile Test______ Per Each

Office of Materials and Testing

Gain/Loss 1 at Shaft and Toe 1.000 / 1.000

Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/in	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
6.0	31.1	15.1	16.0	0.3	1.588	-0.275	5.34	14.6
12.0	31.8	24.5	7.3	0.3	1.596	-0.290	5.32	14.2
18.0	265.4	51.9	213.5	5.2	1.938	-0.231	6.72	9.7
24.0	80.7	69.7	10.9	0.8	1.757	-0.242	5.84	11.0
30.0	104.6	86.4	18.1	1.2	1.817	-0.251	6.04	10.1
36.0	161.3	112.3	49.1	2.4	1.906	-0.209	6.34	8.9
42.0	199.2	146.9	52.3	3.0	1.949	-0.209	6.46	8.6

Total Continuous Driving Time 18.00 minutes; Total Number of Blows

826 (starting at penetration 6.0 ft)

APE D 16-42

Ram Weight Efficiency Pressure	3.53 0.800 1368 (93%)	kips psi
Helmet Weight Hammer Cushion Pile Cushion COR of P.C.	3.00 34825 735 0.500	kips kips/in kips/in
Skin Quake	0.100	in
Toe Quake	0.116	in
Skin Damping	0.064	s/ft
Toe Damping	0.150	s/ft
Pile Length	44.00	ft
Pile Penetration	44.00	ft
Pile Top Area	196.00	in2

(Proportional)

- > Pile: PSC 14 inch
- > Hammer: APE D16-42
- > Soil Boring: B1
- > Pile cushion: 8" plywood

Project Manager:	BG	PI No.	007631			GRLWEAP Drivability Analysis	Exhibit:
Drawn by:	BG	Scale:	N.T.S.	lierr	acon	Truman Liner Park Trail- Phase II	
Checked by:	GL	File Name:	ES165111	Consulting Eng	gineers & Scientists	BFI # 1- Near Lake Mayer	C-7-2
Approved by:	GL	Date: 1	1/17/2017	2201 Rowland Avenue Phone (912) 629 4000	Savannah, Georgia 31404 Fax (912) 629 4001	Savannah, Chatham County, Georgia	

Bridge Foundation Investigation (BFI # 2)

Truman Liner Park Trail- Phase II P.I. No. 0007631 CSHPP-0007-00(631), Chatham County

> January 22, 2018 Terracon Project No. ES165111

> > Prepared for: McGee Partner, Inc. Atlanta, Georgia

Prepared by: Terracon Consultants, Inc. Savannah, Georgia

January 22, 2018

McGee Partner, Inc. 13 Corporate Blvd., N.E. Suite 200 Atlanta, Georgia 30329

- Attn: Tommy Crochet, P.E. P: (770) 938-6400
 - E: tcrochet@mcgeepartners.com

Re: Bridge Foundation Investigation (BFI # 2) Revision 5 Truman Liner Park Trail- Phase II P.I. No. 0007631 CSHPP-0007-00 (631), Chatham County Terracon Project No.: ES165111

Dear Mr. Crochet:

Terracon Consultants, Inc. (Terracon) is pleased to submit this report of Bridge Foundation Investigation for the design and construction of the prefabricated bridge over Casey Canal. This report has been prepared in general accordance with the QA / QC Manual by the Geotechnical Engineering Bureau of the Georgia Department of Transportation.

This report has been revised from the previous version dated December 21, 2017 to address the comments made by the Georgia Department of Transportation via. phone conversation.

Terracon appreciates the opportunity to be of service to you on this project. Should you have any questions concerning this report, or if we may be of further service, please feel free to contact us.

Sincerely, Terracon Consultants, Inc.

JUPINA

Biraj Gautam, P.E. Project Geotechnical Engineer cc: 1 - Client (PDF) 1 - File

Guoming Lin, Ph.D., P.E., D.GE. Senior Principal/Senior Consultant

Terracon Consultants, Inc.2201 Rowland AvenueSavannah, Georgia 31404P (912) 629 4000F (912) 629 4001terracon.com/savannah

Bridge Foundation Investigation (BFI # 2) Revision 5 Truman Liner Park Trail Phase II CSHPP-0007-00 (631), Chatham County January 22, 2018 Terracon Project No. ES165111 Pl No. 0007631

Bridge Foundation Investigation (LRFD) CSHPP-0007-00(631), Chatham County PI No. 0007631 December 21, 2017 Revision No. 5

LOCATION (See Map) Casey Canal alongside Eisenhower Drive in Savannah, Chatham County, Georgia.

GENERAL INFORMATION

GEOLOGIC FORMATION The project is geologically sited in the Princess Anne Shoreline Complex of the Georgia Coastal Plain Region.

SUBSURFACE FEATURES In general, the subsurface soils predominantly consist of soft to medium stiff sandy silts to sandy clays in the upper 12 to 17 feet below grade (approx. El. -7 to -11), followed by medium dense clean / silty / clayey sands to approximately 32 to 42 feet below grade (approx. EL -27 to -36). The medium dense sandy soils are followed by very dense fine sands with silts to silty sands to the termination of borings at approximately 60 feet below grade (approx. El. -54 to -55). Groundwater was encountered at approximately 5.5 to 10 feet below grade (approx. El. -0.5 to -4) at the time of field exploration.

Groundwater level fluctuations may occur due to seasonal variations in the amount of rainfall, runoff and other factors not evident at the time the borings were performed. Therefore, groundwater levels during construction or at other times in the life of the structure may be higher or lower than the levels indicated on the boring logs. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project.

SITE CLASSIFICATION We recommend a site class of D per AASHTO LRFD 3.10.3.1.

1.0 FOUNDATION RECOMMENDATIONS

Bents	Drilled Shaft	Spread Footing	Pile Footing (Type)	Pile Bent (Type)
Bridge Begin (Sta. 218+15)				PSC

Bridge Foundation Investigation (BFI # 2) Revision 5

Truman Liner Park Trail Phase II
CSHPP-0007-00 (631), Chatham County January 22, 2018 Terracon Project No. ES165111 PI No. 0007631

Bridge End		DSC
(Sta. 218+95)	 	 F30

1.1 Pile Properties

		Nominal	Nominal Tensi	Maximum Factored	
		Compression Stress			Structural Resistance
Pile Type	Pile Size (in)	(ksi)	Normal Env.	Severe Env.	(kips)
PSC	14 x 14	3.214	1.248	-	473

1.2 DESIGN LOADS

Bents	Maximum Factored Foundation Load (kips)	Service Load (kips)
Bridge Begin (Sta. 218+15)	60	40
Bridge End (Sta. 218+95)	60	40

2.0 FOUNDATION LOADS

	2.1	PILE FOUNDATION LOADS				
Bents	Pile Type	Size (in)	Down Drag (kips)	Scour (kips)	Driving Resistance (kips)*	
Bridge Begin (Sta. 218+15)	PSC	14	-	-	93	
Bridge End (Sta. 218+95)	PSC	14	-	-	93	

3.0 FOUNDATION ELEVATIONS

Bents	Bottom of Spread Footing	Minimum Tip (Elevation)	Estimated Tip (Elevation)
Bridge Begin (Sta. 218+15)		-25	-30
Bridge End (Sta. 218+95)		-35	-40

Bridge Foundation Investigation (BFI # 2) Revision 5

Truman Liner Park Trail Phase II
CSHPP-0007-00 (631), Chatham County January 22, 2018 Terracon Project No. ES165111 Pl No. 0007631

5.0 GENERAL NOTES

Elevations	The elevations are based on the drawing (Drawing Sheet No. 13-0009) provided by McGee Partners, Inc. Below are the elevations of the existing ground surface at each borehole location.									
	B3: 5.0 B4: 6	5.0								
Waiting Period	None required.									
Theoretical Scour	Appears feasible for the material encountered.									
As BuiltThe as built foundation information should be forwarded toFoundationGeotechnical Engineering Bureau upon completion of the foundationInformationsystem.										
	5.1 PILE FOUNDATION NOTES									
PDO	Driving resistance after minimum tip elevations are achievith Special Provision 520 Piling for LRFD and Spe Dynamic Pile Testing. Perform one PDA test at Bridge B and Bridge End (Sta. 218+95) bents with a total of two should be performed before any additional production pile	eved in conjunction cial Provision 523 degin (Sta. 218+15) PDA tests. These es are driven.								
* Nominal Bearing Resistance of Single Pile	Diving resistance is based on the following field verific resistance factor \emptyset_{dyn} AASHTO LRFD 2010 (10.5.5.2.3-	cation method and I):								
olligie i lie	Resistance Determination Method	Resistance Factor								
	Driving criteria established by dynamic testing of at least two piles based on the site conditions, but no less than 2% of the production piles. The pile resistance should be based on PDA restrike test performed at least four days after the initial driving to account for the setup effect.	0.65								
Drivability	A drivability analysis has been completed on the above their respective estimated tips with APE Model D19-42 S Impact Hammer used.	mentioned piles to Single Acting Diesel								
Pre-drilling	The Contractor may choose pre-drilling to assist in the piles through dense soil layers at both end bents as pe Section 520. If pre-drilling is used, it should be to minimum tip elevations and may be adjusted by the construction:	installation of PSC r Special Provision 3 feet above the e Engineer during								

No separate payment will be made if the Contractor chooses to use predrilling. The maximum diameter of the pre-drilled hole should be determined from the following table:

Pile Size - PSCMaximum Pre-Drill Hole Size - PSC14"12"

- Test PilesWe recommend that PSC test piles be set up at Bridge Begin (Sta. 218+15)
and Bridge End (Sta. 218+95) bents (the same bent locations as PDA tests)
to help determine pile order lengths. The test piles should be of sufficient
length to reach a depth of 5 feet below the Estimated Tip Elevation.
 - Special i. Erratic pile lengths can be expected.

Problems ii. The contractor is made aware of the utility and transmission lines near the proposed bridge area.

iii. Vibrations from pile driving may cause damages to the existing road or nearby bridge. Necessary measures should be taken to avoid the damages to the existing structures. We recommend that the Project Engineer contact the Geotechnical Engineering Bureau prior to construction to evaluate the need for vibration monitoring.

6.0 QA/QC

Prepared By	Biraj Gautam, P.E.
-------------	--------------------

Reviewed By Guoming Lin, Ph.D., P.E., D.GE.

ENCLOSED

Appendix A (Field Exploration)

- Exhibit A-1 Site Location Map
- Exhibit A-2 Exploration Location Plan
- Exhibit A-3 Field Exploration Description
- Exhibit A-4 SPT Boring Cross Section
- Exhibit A-5 Typical Soil Profile and the Proposed Bridge
- Exhibit A-6 SPT Boring Logs

Bridge Foundation Investigation (BFI # 2) Revision 5

Truman Liner Park Trail Phase II
CSHPP-0007-00 (631), Chatham County January 22, 2018 Terracon Project No. ES165111 PI No. 0007631

Appendix B (Laboratory Testing)

Exhibit B-1	Summary of Laboratory Test Results

- (a) Grain Size Analysis Result
- (b) Atterberg Limit Test Result

Appendix C (Supporting Document)

Exhibit C-1	Pile Axial Capacity Analysis Results
Exhibit C-2	General Notes
Exhibit C-3	Unified Soil Classification System
Exhibit C-4	Special Provision Section 520- Piling for LRFD
Exhibit C-5	Special Provision Section 523- Dynamic Pile Testing
Exhibit C-6	GRLWEAP Analysis Results

APPENDIX A FIELD EXPLORATION

- Exhibit A-1 Site Location Map
- Exhibit A-2 Exploration Location Plan
- Exhibit A-3 Field Exploration Description
- Exhibit A-4 SPT Boring Cross Section
- Exhibit A-5 Typical Soil Profile and the Proposed Bridge
- Exhibit A-6 SPT Boring Logs

Savannah, Georgia 31404

Fax (912) 629 4001

Project manager:	BG	PI NO.	0007631		
Drawn by:	BG	Scale:	N.T.S.	lierr	эсоп
Checked by:	GL	File Name:	ES165111	Consulting Eng	gineers & Scientists
Approved by:		Date:		2201 Rowland Avenue	Savannah, Georgia 314
	GL		12/6/2016	Phone (912) 629 4000	Fax (912) 629 40

SITE LOCATION MAP
Truman Liner Park Trail- Phase II
BFI # 2- Alongside Eisenhower Drive
Savannah, Chatham County, Georgia

A-1

Bridge Foundation Investigation (BFI#2) Revision 5

Truman Liner Park Trail- Phase II
CSHPP-0007-00(631), Chatham County January 22, 2018 Terracon Project No. ES165111 PI No. 0007631

Field Exploration Description

The locations of the SPT borings were determined by Terracon based on the proposed plan and discussed with the civil engineers prior to performing the field exploration. The boring locations were located in the field using a hand-held GPS unit and in reference to the existing features. The locations of the exploration points are shown in the Exploration Location Plan and should be considered approximate.

Standard Penetration Testing

The SPT borings were performed in accordance with ASTM D 1586 with a track-mounted drilling rig using hollow stem auger methods. Samples of the soil encountered in the borings were obtained using split-barrel sampling procedures. In the split barrel sampling procedure, the number of blows required to advance a standard 2-inch O.D. split barrel sampler the last 12 inches of the typical total 18-inch penetration by means of a 140-pound hammer with a free fall of 30 inches, is the standard penetration resistance value (SPT-N). This value is used to estimate the in situ relative density of cohesionless soils and consistency of cohesive soils. A rope and cathead hammer was used to advance the split-barrel sampler in the borings performed on this site.

Upon completion, the data collected were analyzed and processed by the project engineer.

1[erracon

Source: FHWA NHI-06-088

BORING LOG NO. B3 Page 1 of 2										
PROJECT: Truman Liner Park Trail-Phase		CLIENT:		Par	tne	; Inc.				
SITE: Savannah, Chatham County, Ge	eorgia		Allania	i, Ge	ory	la				
CONTRACTION See Exhibit A-2 Latitude: 32.0026° Longitude: -81.0857°	Sur	face Elev.: 5 (Ft.	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	PERCENT FINES	WATER CONTENT (%)	Atterberg Limits LL-PL-Pi	
POORLY GRADED SAND WITH SILT (SP-SM)	, fine grained, light		-	-	\mathbf{X}	10-10-10-10 N=20				
SANDY SILT (ML), dark gray, medium stiff		-	-		3-3-4-5 N=7		54	46-29-17		
6.0 SANDY FAT CLAY (CH) dark gray soft	<u>-1</u> 5-		\bowtie	N=7						
dark gray, soft	-	-	\bigotimes	2-2-1-2 N=3 1-1-1-1		121	157-55-102			
12.0			10-	-	\square	N=2				
CLAYEY SAND (SC), fine grained, dark gray, I	oose			-	\times	3-5-3 N=8				
17.0 POORLY GRADED SAND (SP), fine to coarse dense with shell fragments	grained, gray, med	ium	2 _	-						
			20-	-	\times	5-10-9 N=19				
fine to coarse grained, gray, medium dense, w	<i>i</i> th shell fragments		25-	-	\times	10-14-9 N=23				
SILTY SAND (SM), fine grained, dark gray, me	edium dense			-	\times	5-5-8 N=13	23.9	47		
32.0 POORLY GRADED SAND (SP), fine to coarse very dense, with shell fragments	grained, dark gray,	-2	<u>27</u>	-		12-12-39				
			35-	-		N=51				
fine to coarse grained, dark gray, very dense,	with shell fragment	s	40-		\mid	14-13-38 N=51				
Stratification lines are approximate. In-situ, the transition may	be gradual.			Hamn	ner Ty	vpe: Rope and Cathe	ead			
Advancement Method: Mud Rotary Abandonment Method:	See Exhibit A-3 for deso procedures. See Appendix B for deso procedures and addition See Appendix B for expl abbreviations.	cription of field cription of laborat al data (if any). lanation of symbo	ory ols and	Notes:	:					
WATER LEVEL OBSERVATIONS				Boring S	Starte	d: 8/1/2016	Boring Com	pleted:	8/1/2016	
	2201 Rowla			Drill Rig	I: CME	-45	Driller: Carl			
	F	roject	No.: E	S165111	Exhibit: A-6-1					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO LOG-DEPTH TO BOTTOM OF PAGE SPT.GPJ TERRACON2012.GDT 11/30/16

	BORING LOG NO. B3 Page 2 of 2										
PR	OJECT: Truman Liner Park Trail-Phase		CLIENT:	Mo	cGee Partner, Inc.						
SIT	E: Savannah, Chatham County, G	eorgia	-	Al	iania	, Ge	orgi	a			
						6			0	<u> </u>	ATTERBERG
DOL C	LOCATION See Exhibit A-2				(Ft.)	EVEL	ТҮРЕ	EST	FINES	ER T (%)	LIMITS
APHIC	Landde. 52.0020 Longitude01.0057				EPTH	ERVA	APLE	ELD T RESUL	CENT	WATE	LL-PL-PI
GR	DEPTH	Su	rface Elev.: 5 (F ELEVATION (F	=t.) =t.)	ā	WA	SAN	ᇤᄣ	PER	C	
	POORLY GRADED SAND (SP), fine to coarse very dense, with shell fragments (continued)	e grained, dark gray	,	07	_						
	POORLY GRADED SAND WITH SILT (SP-SM), fine to coarse		-37	_						
	grained, gray, very dense, with shell fragmen	IS			_			30-35-38	7.0	13	
					45-			N=75			
					-	-					
	very dense, no recovery				_	-		40-50/5"			
					50-			N=50/5"			
					_						
	very dense, no recovery				_		\geq	50/5"		<u> </u>	
					55-			N=50/5"			
					_	-					
	very dense no recovery				-			48-50/5"			
	60.0 Boring Terminated at 60 Feet			-55	60-		Ĥ	N=50/5"		<u> </u>	
					_	-					
					_						
					-						
					_	-					
					- 70-	-					
					-						
					_						
					-						
					15						
					_						
						-					
	Stratification lines are approximate. In-situ, the transition ma	y be gradual.			80-	Hamr	ner Ty	be: Rope and Cath	lead		
Actor	ann an Malla d					NL					
Advan Mud	ement Method: Rotary	See Exhibit A-3 for desc procedures.	cription of field			Notes					
A la a al		procedures and addition	nal data (if any).	natory	and						
Aband	onment Method:	abbreviations.	anation of sym	5015							
	WATER LEVEL OBSERVATIONS	75			в	oring	Started	: 8/1/2016	Boring Com	pleted: {	3/1/2016
\square	At the time of drilling	llerr	900			orill Rig	: CME	-45	Driller: Carl		
		and Avenue h, Georgia		- P	roject	No.: E	S165111	Exhibit: A-6-1			

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO LOG-DEPTH TO BOTTOM OF PAGE SPT.GPJ TERRACON2012.GDT 11/30/16

BORING LOG NO. B4

Page 1 of 2

PROJECT: Truman Liner Park Trail-Phase	CLIENT: M	AcGe Atlant	e Par a, Ge	tnei org	; Inc. ia		0-	
SITE: Savannah, Chatham County, G	eorgia			U				
DEPTH	Surface Elev.: 6 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	PERCENT FINES	WATER CONTENT (%)	Atterberg Limits
2.0 loose SILTY SAND (SM), fine grained, dark brown, 4.0	 fine grained, brown, medium dense 	<u>4</u> 2	_		6-3-4-5 N=7 4-5-7-8 N=12			
ELASTIC SILT (MH), dark brown, very stiff dark brown, very stiff 8.0		2 5 -	_		7-10-8-8 N=18 6-6-7-7 N=13		33	51-29-22
SANDY LEAN CLAY (CL), dark brown to gray	/, stiff, with wood debris	10			3-5-4-4 N=9			
17.0 POORLY GRADED SAND (SP), fine to coarse dense, with abolt fragments	e grained, gray, medium	15 ⁻	-	\times	5-6-5 N=11			
dense, with shell hagments		20		\times	5-5-5 N=10			
fine to coarse grained, gray, dense, with shel	l fragments -2	25 ⁻	-	\times	10-15-15 N=30			
32.0 CLAYEY SAND (SC) fine to medium grained	-2	30- 6	_	\times	7-12-15 N=27		81	89-24-65
37.0 POORLY GRADED SAND (SP) fine to coarse	-3	35- 1	-	\times	10-12-15 N=27	23.8	33	
dense, with shell fragments		40	-	\times	11-9-11 N=20			
Stratification lines are approximate. In-situ, the transition ma	ay de gradual.		Hamr	ner Ty	vpe: Rope and Cath	nead		
Advancement Method: Mud Rotary Abandonment Method:	See Exhibit A-3 for description of field procedures. See Appendix B for description of laborate procedures and additional data (if any). See Appendix B for explanation of symbol observations	ory Is and	Notes	:				
WATER LEVEL OBSERVATIONS At the time of drilling		Π	Boring S	Starte	d: 7/28/2016 E-45	Boring Com Driller: Carl	pleted:	7/28/2016
	Savannah, Georgia		Project	No.: E	S165111	Exhibit:	4-6-2	

BORING	LOG	NO.	B4
--------	-----	-----	-----------

Page 2 of 2

PR	OJECT: Truman Liner Park Trail-Phase			cGee	Par	tner	Inc.		uge z	_ 01 2
			At	lanta	, Ge	orgi	a			
SIT	E: Savannah, Chatham County, Geo	orgia								
00	LOCATION See Exhibit A-2				/EL	ΡE	L. (NES	(%)	ATTERBERG LIMITS
PHICL	Latitude: 32.0025° Longitude: -81.0854°			TH (FI	R LEV	LET	D TES SULTS	NT FI	ATER TENT (
GRAF		Su	face Elev.: 6 (Ft.)	DEP	WATE	SAMP	FIEL REG	ERCE	CONT	LL-PL-PI
	DEPTH POORLY GRADED SAND (SP), fine to coarse g	rained, gray, med	ELEVATION (Ft.)		- 0			<u> </u>		
	dense, with shell fragments (continued)			_						
	fine to coarse grained, gray, year, dense, with st	oll fragmonts		-	-		20-26-25			
	line to coarse grained, gray, very dense, with si	len nagments		45 -		Д	N=51			
				-						
				-	-		10.00.04			
	fine to coarse grained, gray, very dense, with sr	ell fragments		- 50-		Д	N=46			
			-							
				_						
	fine to coarse grained, gray, very dense, with sh	ell fragments		- 55		\bowtie	42-50/3" N=50/3"			
	F7 0		51	- 55	-			-		
	<u>SILTY SAND (SM)</u> , fine grained, dark gray, very	dense	-51	_						
	60.0		-54	_	-	X	50-50/2" N=50/2"	21.8	25	
	Boring Terminated at 60 Feet			60-			11 00/2	1		
				-						
				_	_					
				65-						
				-	-					
				_	-					
				70-						
				_	-					
				_						
				75–						
				_						
				-						
				80-	-					
	Stratification lines are approximate. In-situ, the transition may b	e gradual.			Hamn	ner Ty	pe: Rope and Cath	ead		
Advan	cement Method: Se	e Exhibit A-3 for desc	cription of field		Notes:					
iiiuu	,, pr Se	e Appendix B for des cedures and addition	cription of laborator	у						
Aband	onment Method: See	e Appendix B for exp breviations.	lanation of symbols	and						
								1		
\square	At the time of drilling				oring S	Started	: 7/28/2016	Boring Com	pleted: 7	7/28/2016
		2201 Rowla	and Avenue		rnil Rig		-45	Driller: Carl	1.6.2	

APPENDIX B LABORATORY TESTING

Exhibit B-1 Summary of Laboratory Test Results

(a) Atterberg Limit Test Result

(b) Grain Size Analysis Result

Terracon Project Name: Truman Liner Park Trail-Phase II Terracon Project No.: ES165111 Project Location: Savannah, Chatham County, Georgia PI No.: 0007631

Summary of Soil Laboratory Test

Borehole	Sample Depth (ft)	Elevation (ft)	Material Description	nscs	Natural Moisture content (%)	Liquid Limit (%)	Plastic Limit (%)	Plastic Index (%)	Cu	Cc	D90 (mm)	D60 (mm)	D30 (mm)	% Gravel	%Sand	%Fine
	2 to 4	3 to 1	Sandy silt	ML	53.5	46	29	17	-	-	-					
B3	8 to 10	-3 to -5	Sandy clay	СН	121.2	157	55	102	-	-	-					
5	28.5 to 30	-23.5 to -25	Silty sand	SM	46.9		-	1	-	-	0.220	0.124	0.082	0.0	75.7	23.9
	43.5 to 45	-38.5 to -40	Fine sand with silt	SP-SM	13.0		-	1	9.01	1.46	4.750	0.910	0.366	0.0	83.0	7.0
	6 to 8	0 to -2	Elastic silt	MH	32.8	51	29	22		1	-					
B4	28.5 to 30	-22.5 to -24	Sandy clay	СН	80.7	89	24	65		-	-					
D4	33.5 to 35	-27.5 to -29	Clayey sand	SC	33.3			-		-	0.270	0.140	0.083	0.0	75.6	23.8
	58.5 to 59.2	-52.5 to -53.2	Silty sand	SM	25.3						0.140	0.107	0.081	0.0	78.1	21.8

Note: Following surface elevations are based on the drawing (Drawing Sheet No. 13-0009) provided by McGee Partners, Inc.

B3: 5

B4: 6

GRAIN SIZE DISTRIBUTION

GRAIN SIZE: USCS 1 SPT.GPJ TERRACON2012.GDT 11/30/16 ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

GRAIN SIZE DISTRIBUTION

APPENDIX C SUPPORTING DOCUMENT

- Exhibit C-1 Pile Axial Capacity Analyses
- Exhibit C-2 General Notes
- Exhibit C-3 Unified Soil Classification System
- Exhibit C-4 Special Provision Section 520- Piling for LRFD
- Exhibit C-5 Special Provision Section 523- Dynamic Pile Testing
- Exhibit C-6 GRLWEAP Analysis Results

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	RELATIVE DENSITY (More than 50% reta Density determined by Sta Includes gravel	OF COARSE-GRAINED SOILS ined on No. 200 sieve.) ndard Penetration Resistance s, sands and silts.	CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance			
SMS	Descriptive Term (Density)	Std. Penetration Resistance (blows per foot)	Descriptive Term (Consistency)	Undrained Shear Strength (kips per square foot)	Std. Penetration Resistance (blows per foot)	
TER	Very Loose	0 - 3	Very Soft	less than 0.25	0 - 1	
STENGTH	Loose 4 - 9		Soft	0.25 to 0.50	2 - 4	
	Medium Dense	10 - 29	Medium-Stiff	0.50 to 1.00	5 - 7	
	Dense	Dense 30 - 50		1.00 to 2.00	8 - 14	
	Very Dense	Very Dense > 50		2.00 to 4.00	15 - 30	
			Hard	above 4.00	> 30	

RELATIVE PROPORTIONS OF SAND AND GRAVEL

Descriptive Term(s) of other constituents

Trace With

Modifier

Percent of Dry Weight < 15 15 - 29 > 30

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s) of other constituents Trace With Modifier Percent of Dry Weight < 5 5 - 12 > 12 **GRAIN SIZE TERMINOLOGY**

Descriptive Term(s) of other constituents

<u>Percent of</u> Dry Weight

Boulders Cobbles Gravel Sand Silt or Clay Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

PLASTICITY DESCRIPTION

<u>Term</u> Non-plastic Low Medium High 0 1 - 10 11 - 30 > 30

lerracon

Exhibit C-2

UNIFIED SOIL CLASSIFICATION SYSTEM

Criteria fe		Soil Classification			
				Group Symbol	Group Name [₿]
Coarse Grained Soils	Gravels	Clean Gravels Less than 5% fines ^c	$Cu \geq 4 \text{ and } 1 \leq Cc \leq 3^{\text{E}}$	GW	Well-graded gravel ^F
More than 50% retained	More than 50% of coarse fraction retained on No. 4 sieve		$Cu < 4 \ and/or \ 1 > Cc > 3^{\text{E}}$	GP	Poorly graded gravel ^F
on No. 200 sieve		Gravels with Fines More than 12% fines ^c	Fines classify as ML or MH	GM	Silty gravel ^{F,G, H}
			Fines classify as CL or CH	GC	Clayey gravel ^{F,G,H}
	Sands 50% or more of coarse fraction passes No. 4 sieve	Clean Sands Less than 5% fines [□]	$Cu \geq 6 \text{ and } 1 \leq Cc \leq 3^{\text{E}}$	SW	Well-graded sand
			$Cu < 6 \ and/or \ 1 > Cc > 3^{\text{E}}$	SP	Poorly graded sand
		Sands with Fines More than 12% fines ^D	Fines classify as ML or MH	SM	Silty sand ^{G,H,I}
			Fines Classify as CL or CH	SC	Clayey sand ^{G,H,I}
Fine-Grained Soils	Silts and Clays Liquid limit less than 50	inorganic	$PI > 7$ and plots on or above "A" line $\ensuremath{^{_{\!\!\!\!\!\!}}}$	CL	Lean clay ^{K,L,M}
50% or more passes the No. 200 sieve			PI < 4 or plots below "A" line ^J	ML	Silt ^{K,L,M}
		organic	Liquid limit - oven dried	< 0.75 OL	Organic clay ^{K,L,M,N}
			Liquid limit - not dried		Organic silt ^{K,L,M,O}
	Silts and Clays Liquid limit 50 or more	inorganic	PI plots on or above "A" line	СН	Fat clay ^{K,L,M}
			PI plots below "A" line	MH	Elastic Silt ^{K,L,M}
		organic	Liquid limit - oven dried	ОН	Organic clay ^{K,L,M,P}
			Liquid limit - not dried	OII	Organic silt ^{K,L,M,Q}
Highly organic soils	c soils Primarily organic matter, dark in color, and organic odor				Peat

^ABased on the material passing the 3-in. (75-mm) sieve

- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^C Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- ^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

^ECu =
$$D_{60}/D_{10}$$
 Cc = $\frac{(D_{30})^2}{D_{10} \times D_{60}}$

^F If soil contains ≥ 15% sand, add "with sand" to group name. ^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM. ^HIf fines are organic, add "with organic fines" to group name.

- $^{\rm I}$ If soil contains $\geq 15\%$ gravel, add "with gravel" to group name.
- ^J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- ^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- $^{\rm L}$ If soil contains \geq 30% plus No. 200 predominantly sand, add "sandy" to group name.
- $^{\rm M}$ If soil contains \geq 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- $^{\sf N}\,{\sf PI}\geq 4$ and plots on or above "A" line.
- ^oPI < 4 or plots below "A" line.
- ^P PI plots on or above "A" line.
- ^QPI plots below "A" line.

DEPARTMENT OF TRANSPORTATION STATE OF GEORGIA

SPECIAL PROVISION

PROJECT NO. CSHPP-0007-00(631), Chatham County P.I. NO. 0007631

SECTION 520—PILING

Add the following to Subsection 520.3.05.G:

At the Contractor's option, predrilling may be used to loosen dense soil layers to assist in the installation of piling in lieu of spudding or jetting. To predrill, drill an auger into the ground to the required elevation at the pile location. It is not necessary to remove all material or to provide casing. Use one of the following maximum auger diameters corresponding to the pile size:

PSC Pile Size	Maximum Pre-drill Auger Size
14" (350 mm)	12" (300 mm)
16" (400 mm)	18" (450 mm)
18" (450 mm)	18" (450 mm)
20" (500 mm)	24" (600 mm)
24" (600 mm)	24" (600 mm)
30" (750 mm)	30" (750 mm)
36" (900 mm)	36" (900 mm)
Metal Pile Size	<u>Maximum Pre-drill Auger Size</u>
14" (350 mm)	12" (300 mm)
16" (400 mm)	12" (300 mm)
18" (450 mm)	12" (300 mm)

There will not be any separate payment made for predrilling.

Office of Materials and Testing

DEPARTMENT OF TRANSPORTATION STATE OF GEORGIA

SPECIAL PROVISION

PROJECT NO. CSHPP-0007-00(631), Chatham County P.I. NO. 0007631

SECTION 520—PILING

Delete Sub-Section 520.3.05.D.1 and substitute the following:

520.3.05.D.1. Determine Driving Resistance

Drive piles in one continuous operation. Determine the driving resistance of the piling based on the method specified in the plans, which will be one of the following methods (a - c):

- a. Upon completion of the dynamic pile testing in accordance with Special Provision Section 523. The pile bearing will be determined by computing the penetration per blow with less than ¼-inch (6-mm) rebound averaged through 12 inches (305 mm) each of penetration. When it is considered necessary by the Engineer, the average penetration per blow may be determined by averaging the penetration per blow through the last 10 to 20 blows of the hammer. In soft material the driving resistance may be determined, at the Engineer's discretion, after delaying driving operations and performing pile restrikes.
- b. Upon completion of the loading test in accordance with Sub-Section 520.3.05.D.2.
- c. Shall not be used when driving pile to hard rock. Using FHWA-modified Gates Formula as provided below:

$$R_{ndr} = 1.75 (E_d)^{0.5} \log_{10} (10N_b) - 100$$
 (kips) U.S units
$$R_{ndr} = 7 (E_d)^{0.5} \log_{10} (10N_b) - 550$$
 (kN) S.I. units

Where:

 R_{ndr} = nominal pile driving resistance measured during pile driving

 E_d = developed hammer energy. This is the kinetic energy in the ram at impact for a given blow. If ram velocity is not measured, it may be assumed equal to the potential energy of the ram at the height of the stroke, taken as the ram weight times the actual stroke (ft-lb for U.S units, kN-m for S.I. units)

 N_b = Number of hammer blows for 1.0 inch of pile permanent set (blows/in)

These resistance formulas apply only when:

- The hammer has a free fall.
- The head of the pile is not broomed, crushed, spalled, or excessively crimped.
- The penetration rate is reasonably uniform.

Determining driving resistance by formula is not a Pay Item. Provide the facilities for determining driving resistance by formula as an incidental part of the work.

Once the driving resistance has been determined by one of the methods noted above, do not continue to drive piles if the Engineer determines that the piles have reached practical refusal. Practical refusal is defined as 20 blows per inch with the hammer operating at the highest setting or setting determined by the Engineer and less than ¹/₄-inch (6-mm) rebound per blow. The Engineer will generally make this determination within 2 inches (51 mm) of driving. However, the Engineer will not approve the continuation of driving at practical refusal for more than 12 inches (305 mm). When the required pile penetration cannot be achieved by driving without exceeding practical refusal, use other penetration aids such as jetting, spudding, predrilling or other methods approved by the Engineer.

d. Wave Equation: Use the Wave Equation Analysis for Piles (WEAP) program to evaluate the suitability of the proposed driving system chosen from the methods noted above (including the hammer, follower, capblock and pile cushions) as well as to estimate the driving resistance to achieve the pile bearing requirements and to evaluate pile driving stresses. Use the WEAP program to show that the hammer is capable of driving to a driving resistance equal 130% (1.3 times) the driving resistance shown in the Plans without overstressing the piling in compression or tension and without reaching practical refusal.

Perform the WEAP analysis with personnel who are experienced in this type work, and have performed this analysis on a minimum of 15 projects. Provide a list of the qualifications and experience of the personnel to perform the WEAP analysis for this Project.

The Engineer may modify the scour resistance shown in the plans if the dynamic pile test is used to determine the actual soil resistance through the scour zone. Also, the Engineer may make modifications in scour resistance when the Contractor proposes drilling and/or jetting to reduce the soil resistance in the scour zone.

A minimum of two weeks prior to beginning any pile driving operations, submit to the Engineer for evaluation and approval the following information on all of the proposed pile driving system(s) to be used on the Project including but not limited to:

- i. Items on Pile Driving Equipment Data Sheet
- ii. Other information on the driving system required by the Engineer
- iii. A WEAP program output indicating the approximate depth or elevation where the pile will achieve the bearing required
- iv. Valid Driving Criteria.

Valid driving criteria is defined as having the required hammer having a hammer set greater than 3 blows per inch and less than 10 blows per inch at the driving resistance for that pile.

If WEAP analyses show that the hammer(s) will overstress the pile, modify the driving system or method of operation as required to prevent overstressing the pile. Resubmit the modified pile driving system information and WEAP program output to the Engineer for re-evaluation. Do not begin pile driving operations until the Engineer has approved the qualifications of the personnel, the WEAP program output, and the pile driving system(s).

Approval of the pile driving system(s) is also based on satisfactory field trials with dynamic pile testing. Obtain approval from the Engineer for the pile driving system(s) based on satisfactory field performance.

If piles require different hammer sizes, the Contractor may elect to drive with more than one size hammer or with a variable energy hammer, provided that the hammer is properly sized and cushioned, will not damage the pile, and will develop the required resistance.

For penetration of weak soils by concrete piles, use thick cushions and/or reduced stroke to control tension stresses during driving.

Office of Materials and Testing

Pile Driving Data Form

Contract ID: Structure Name: PI Number: Structure No.: Pile Driving Contractor: County Manufacturer: _____ Model No. _____ Hammer Type: _____ Serial No. _____ Manufacturers Maximum Rated Energy: _____(ft-k) Stroke at Maximum Rated Energy: _____(ft) Hammer Range in Operating Energy: ______ to _____(ft-k) Range in Operating Stroke: ______ to _____(ft) Ram Weight: ______ (kips) Modifications: _____ Weight: _____(kips) Diameter: _____(in) Striker Plate Thickness: _____(in) Material 1 Material 2
 Name:
 Name:

 Area:
 _____(in²)
 Area: (in²)
Name: _____ Hammer Thickness/Plate: ____(in) Thickness/Plate:____(in) Cushion No. of Plates: _____ No. of Plates: _____ Total Thickness of Hammer Cushion: _____(in) Weight including inserts: (kips) Helmet Material: Area: _____(in²) Thickness/Sheet: ____(in) Pile No. of Sheets: Cushion Total Thickness of Pile Cushion: _____(in) Pile Type: _____ Wall Thickness: _____(in) Taper: _____ Cross Sectional Area: ___(in²) Weight/Meter: _____ Ordered Length: _____(ft) Pile Driving Resistance: _____(kips) Description of Splice: Driving Shoe/Closure Plate Description: Submitted By: _____ Date: _____

DEPARTMENT OF TRANSPORTATION STATE OF GEORGIA

SPECIAL PROVISION

PROJECT NO. CSHPP-0007-00(631), Chatham County P.I. NO. 0007631

SECTION 523 - DYNAMIC PILE TESTING

523.1 General Description

The work consists of performing dynamic pile testing using the Pile Driving Analyzer (PDA) to monitor the driving of piles with accelerometer and strain gauges attached to the piles. Piles to be dynamically tested will be identified in the Special Provision or on the Plans. Prior to pile driving, the Engineer will determine production or test piles to be dynamically tested. Perform the dynamic pile testing in accordance with ASTM D4945-12.

Take dynamic measurements during driving of any required piles. Drive the pile as shown in the Special Provisions or on the Plans.

523.2 Materials

Furnish measuring instruments for dynamic pile testing. Attach instruments near the top of the piles with bolts placed in drilled holes. Furnish materials, labor and equipment necessary for installation of the instruments.

523.3 Construction Requirements

Measure wave speed prior to driving piles. Wave speed measurements will not be required for Steel H piles or metal shell piles. When wave speed measurements are performed, place the piles in a horizontal position not in contact with other piles.

Perform dynamic pile testing during driving. Modify the driving to reduce the stress and/or eliminate the damage, should the recommended stress level be exceeded or if damage occurs (determined visually or as indicated by the instrumentation).

Do not exceed the following maximum driving stresses, as determined by the dynamic pile testing:

1. For Steel piles:

0.9 Fy, where Fy = Yield strength of steel

2. For Prestressed Concrete Piles:

Compression:

 $\sigma_{dr} = (0.85f'_c - f_{pe})$

Tension in Normal Environments:

 $\sigma_{dr} = (0.095\sqrt{f'_c} + f_{pe})$

Tension in Severe Corrosive Environments:

 $\sigma_{dr} = \varphi_{da} f_{pe}$

where;

 σ_{dr} = maximum allowed driving stress, ksi f'c= specified minimum 28-day compressive strength of concrete, ksi fpe= effective prestress in concrete, ksi, (after all losses) at the time of driving taken as 0.78 times the initial prestress force

Re-drive friction piles that do not obtain bearing after a freeze period of a minimum of 24 hours or for a period designated on the Plans, whichever is longer. Reset the gauges if required. Re-strike the pile with a warm hammer until a maximum penetration of 3 inches (76 mm) or 40 blows is reached, whichever occurs first. The Engineer may modify the Pile Driving Objective based on the results of the PDA work.

Provide two weeks' notice prior to the driving of designated piles and cooperate with the Engineer in connection with the performance of Dynamic Pile Testing.

Provide a complete report consisting of but not limited to PDA field monitoring data, results of CAPWAP computer analyses, and recommendations such as pile lengths, hammer fuel setting, and valid driving criteria. Valid driving criteria is defined as having the required hammer having a hammer set greater than 3 blows per inch and less than 10 blows per inch at the driving resistance for that pile. Submit the report electronically in PDF format and the electronic data files of the PDA analysis and CAPWAP to the Geotechnical Bureau and allow seven (7) calendar days for review and approval before proceeding with driving production piles.

523.4 Measurement

The Dynamic Pile Tests performed in accordance with these Specifications will be counted separately for payment. (Refer to plans summary sheet for the required amount of PDA testing.)

523.5 Payment

The Dynamic Pile Test completed and accepted will be paid for at the Contract unit Price. This payment will be full compensation for all costs of complying with this specification, including incidentals, additional work, and any delays incurred in conjunction therewith.

Payment will be made under:

Item No. 523. Dynamic Pile Test______ Per Each

Office of Materials and Testing

Gain/Loss 1 at Shaft and Toe 1.000 / 1.000

Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/in	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
28.4	10.0	18.4	0.2	1.951	-0.434	5.27	20.5
52.9	40.7	12.2	0.4	2.110	-0.333	5.76	17.9
128.6	110.6	18.0	1.2	2.297	-0.157	6.42	14.6
296.2	207.8	88.3	3.4	2.541	-0.264	7.11	13.4
267.5	243.0	24.5	2.9	2.662	-0.330	7.08	12.8
387.4	284.9	102.5	5.2	2.819	-0.127	7.45	12.2
383.0	321.7	61.3	5.0	2.774	-0.441	7.40	11.1
	Ultimate Capacity kips 28.4 52.9 128.6 296.2 267.5 387.4 383.0	Ultimate Capacity kipsFriction kips28.410.052.940.7128.6110.6296.2207.8267.5243.0387.4284.9383.0321.7	Ultimate Capacity kipsFriction kipsEnd Bearing kips28.410.018.452.940.712.2128.6110.618.0296.2207.888.3267.5243.024.5387.4284.9102.5383.0321.761.3	Ultimate Capacity kipsFriction kipsEnd Bearing kipsBlow Count blows/in28.410.018.40.252.940.712.20.4128.6110.618.01.2296.2207.888.33.4267.5243.024.52.9387.4284.9102.55.2383.0321.761.35.0	Ultimate Capacity kipsFriction kipsEnd Bearing kipsBlow Count blows/inComp. Stress ksi28.410.018.40.21.95152.940.712.20.42.110128.6110.618.01.22.297296.2207.888.33.42.541267.5243.024.52.92.662387.4284.9102.55.22.819383.0321.761.35.02.774	Ultimate Capacity kipsFriction kipsEnd Bearing kipsBlow Count blows/inComp. Stress ksiTension Stress ksi28.410.018.40.21.951-0.43452.940.712.20.42.110-0.333128.6110.618.01.22.297-0.157296.2207.888.33.42.541-0.264267.5243.024.52.92.662-0.330387.4284.9102.55.22.819-0.127383.0321.761.35.02.774-0.441	Ultimate Capacity kipsFriction kipsEnd Bearing kipsBlow Count blows/inComp. Stress ksiTension Stress ksiStroke ft28.410.018.40.21.951-0.4345.2752.940.712.20.42.110-0.3335.76128.6110.618.01.22.297-0.1576.42296.2207.888.33.42.541-0.2647.11267.5243.024.52.92.662-0.3307.08387.4284.9102.55.22.819-0.1277.45383.0321.761.35.02.774-0.4417.40

Total Continuous Driving Time 26.00 minutes; Total Number of Blows 1134 (starting at penetration 6.0 ft)

Project Manager	: BG	PI No.	007631			GRLWEAP Drivability Analysis	Exhibit:
Drawn by:	BG	Scale:	N.T.S.	lierr	acon	Truman Liner Park Trail- Phase II	
Checked by:	GL	File Name:	ES165111	Consulting En	gineers & Scientists	BFI # 2- Alongside Eisenhower Drive	C-7-2
Approved by:	GL	Date:	11/17/2017	2201 Rowland Avenue Phone (912) 629 4000	Savannah, Georgia 31404 Fax (912) 629 4001	Savannah, Chatham County, Georgia	